Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation
Abstract
:1. Introduction
2. Exact Solutions of the Unperturbed Modified Gardner Equation
3. Persistence of Kink and Antikink Wave Solutions
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, Z.; Shi, L. Dynamics of bounded traveling wave solutions for the modified Novikov equation. Dyn. Syst. Appl. 2018, 27, 581–591. [Google Scholar]
- Shi, L.; Wen, Z. Bifurcations and dynamics of traveling wave solutions to a Fujimoto–Watanabe equation. Commun. Theor. Phys. 2018, 69, 631–636. [Google Scholar] [CrossRef]
- Shi, L.; Wen, Z. Several types of periodic wave solutions and their relations of a Fujimoto–Watanabe equation. J. Appl. Anal. Comput. 2019, 9, 1193–1203. [Google Scholar] [CrossRef]
- Miura, R.M.; Gardner, C.S.; Kruskal, M.D. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 1968, 9, 1204–1209. [Google Scholar] [CrossRef]
- Betchewe, G.; Victor, K.K.; Thomas, B.B.; Crepin, K.T. New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding. Appl. Math. Comput. 2013, 223, 377–388. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, S.; Liu, S. New kinds of solutions to Gardner equation. Chaos Soliton Fract. 2004, 20, 301–309. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Dev, A.N.; Soubhagya, K.S.; Homan, E.; Geeta, A. Exact solutions of the generalized ZK and Gardner equations by extended generalized (G′/G)–expansion method. Adv. Math. Phys. 2023, 2023, 3965804. [Google Scholar] [CrossRef]
- Ghanbari, B.; Baleanu, D. New solutions of Gardner’s equation using two analytical methods. Front. Phys. 2019, 7, 00202. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z. The bifurcations of solitary and kink waves described by the Gardner equation. Discret. Cont. Dyn. Syst.-S 2016, 9, 1629–1645. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Z.; Liang, Y. Existence of solitary waves and periodic waves to a perturbed generalized KdV equation. Math. Model. Anal. 2014, 19, 537–555. [Google Scholar] [CrossRef]
- Chen, A.; Guo, L.; Deng, X. Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 2016, 261, 5324–5349. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Zhang, M. Dynamics of classical Poisson–Nernst–Planck systems with multiple cations and boundary layers. J. Dyn. Differ. Equ. 2021, 33, 211–234. [Google Scholar] [CrossRef]
- Ge, J.; Du, Z. The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl. Math. Lett. 2020, 103, 106202. [Google Scholar] [CrossRef]
- Zhang, L.; Han, M.; Zhang, M.; Khalique, C.M. A new type of solitary wave solution of the mKdV equation under singular perturbations. Int. J. Bifurc. Chaos 2020, 30, 2050162. [Google Scholar] [CrossRef]
- Du, Z.; Li, J.; Li, X. The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal. 2018, 275, 988–1007. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, W.; Shen, J.; Gao, L. Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos Soliton Fract. 2008, 37, 532–538. [Google Scholar] [CrossRef]
- Wen, Z. On existence of kink and antikink wave solutions of singularly perturbed Gardner equation. Math. Meth. Appl. Sci. 2020, 43, 4422–4427. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Y. Persistence of kink and anti–kink wave solutions for the perturbed double sine–Gordon equation. Appl. Math. Lett. 2023, 141, 108616. [Google Scholar] [CrossRef]
- Olivier, C.P.; Verheest, F.; Hereman, W.A. Collision properties of overtaking supersolitons with small amplitudes. Phys. Plasmas 2018, 25, 032309. [Google Scholar] [CrossRef]
- Tamang, J.; Saha, A. Bifurcations of small–amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three–component electron–ion plasma. Phys. Plasmas 2020, 27, 012105. [Google Scholar] [CrossRef]
- Jhangeer, A.; Hussain, A.; Junaid-U-Rehman, M.; Baleanu, D.; Riaz, M.B. Quasi–periodic, chaotic and traveling wave structures of modified Gardner equation. Chaos Soliton Fract. 2021, 143, 110578. [Google Scholar] [CrossRef]
- Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 1979, 31, 53–98. [Google Scholar] [CrossRef]
- Han, M. Bifurcation Theory and Periodical Solution of Dynamic System; Science Press: Beijing, China, 2002. [Google Scholar]
- Perko, L. Differential Equations and Dynamical Systems; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Wang, L.; Zhang, M. Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation. Mathematics 2024, 12, 928. https://doi.org/10.3390/math12060928
Yan W, Wang L, Zhang M. Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation. Mathematics. 2024; 12(6):928. https://doi.org/10.3390/math12060928
Chicago/Turabian StyleYan, Weifang, Linlin Wang, and Min Zhang. 2024. "Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation" Mathematics 12, no. 6: 928. https://doi.org/10.3390/math12060928
APA StyleYan, W., Wang, L., & Zhang, M. (2024). Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation. Mathematics, 12(6), 928. https://doi.org/10.3390/math12060928