The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform
Abstract
:1. Introduction
2. Numerical Schemes
2.1. 2-D Case
2.2. 3-D Case
3. Conservation
- i.
- ii.
- iii.
- iv.
- (1)
- (2)
- (3)
- (4)
- ,
4. Fast Implementation
Algorithm 1: The Picard iteration for the nonlinear system (18) |
- Step 1:
- According to the properties of the Kronecker product (ii) and (iv), the matrix-vector multiplication of in Equation (17) can be achieved as follows:It can be achieved using the fast discrete cosine transform.
- Step 2:
- Since it is a diagonal matrix, , where is represented by .
- Step 3:
- Since , then . This part can be achieved using the fast inverse discrete cosine transform.
5. Numerical Experiments and Discussion
5.1. Numerical Experiments
5.2. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibarra-Villalon, H.E.; Pottiez, O.; Gómez-Vieyra, A.; Lauterio-Cruz, J.P.; Bracamontes-Rodriguez, Y.E. Numerical approaches for solving the nonlinear Schrödinger equation in the nonlinear fiber optics formalism. J. Opt. 2020, 22, 043501. [Google Scholar] [CrossRef]
- Vowe, S.; Lämmerzahl, C.; Krutzik, M. Detecting a logarithmic nonlinearity in the Schrödinger equation using Bose-Einstein condensates. Phys. Rev. A 2020, 101, 043617. [Google Scholar] [CrossRef]
- Sultana, S. Review of heavy-nucleus-acoustic nonlinear structures in cold degenerate plasmas. Rev. Mod. Plasma Phys. 2022, 6, 6. [Google Scholar] [CrossRef]
- Rao, J.-G.; Chen, S.-A.; Wu, Z.-J.; He, J.-S. General higher-order rogue waves in the space-shifted symmetric nonlocal nonlinear Schrödinger equation. Acta Phys. Sin. 2023, 72, 104204-1–104204-9. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.T.; Xu, T.; Shui, J.J. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation. Acta Phys. Sin. 2020, 69, 010502-1–010502-10. [Google Scholar] [CrossRef]
- Wen, J.-M.; Bo, W.-B.; Wen, X.-K.; Dai, C.-Q. Multipole vector solitons in coupled nonlinear Schrödinger equation with saturable nonlinearity. Acta Phys. Sin. 2023, 72, 100502-1–100502-7. [Google Scholar] [CrossRef]
- Ahmad, J.; Akram, S.; Noor, K.; Nadeem, M.; Bucur, A.; Alsayaad, Y. Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 2023, 13, 10877. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Huang, J.-J.; Lu, L.-G.; Ren, J.-L. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method. Acta Phys. Sin. 2019, 68, 090203-1–090203-14. [Google Scholar] [CrossRef]
- Qureshi, S.; Chang, M.M.; Shaikh, A.A. Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives. J. Ocean Eng. Sci. 2021, 6, 217–227. [Google Scholar] [CrossRef]
- Stephanovich, V.A.; Olchawa, W.; Kirichenko, E.V.; Dugaev, V.K. 1D solitons in cubic-quintic fractional nonlinear Schrödinger model. Sci. Rep. 2022, 12, 15031. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Abdeljabbar, A.; Sheikh, M.A.N.; Taher, M.A. Optical solitons to the fractional order nonlinear complex model for wave packet envelope. Results Phys. 2022, 43, 106095. [Google Scholar] [CrossRef]
- Xie, P.; Zhu, Y. Wave Packets in the Fractional Nonlinear Schrödinger Equation with a Honeycomb Potential. Multiscale Model. Simul. 2021, 19, 951–979. [Google Scholar] [CrossRef]
- Riaz, M.B.; Atangana, A.; Jahngeer, A.; Jarad, F.; Awrejcewicz, J. New optical solitons of fractional nonlinear Schrodinger equation with the oscillating nonlinear coefficient: A comparative study. Results Phys. 2022, 37, 105471. [Google Scholar] [CrossRef]
- Shahen, N.H.M.; Rahman, M.M. Dispersive solitary wave structures with MI Analysis to the unidirectional DGH equation via the unified method. Partial Differ. Equ. Appl. Math. 2022, 6, 100444. [Google Scholar]
- An, T.; Shahen, N.H.M.; Ananna, S.N.; Hossain, M.F.; Muazu, T. Exact and explicit travelling-wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Results Phys. 2020, 19, 103517. [Google Scholar]
- Shahen, N.H.M.; Rahman, M.M.; Alshomrani, A.S.; Inc, M. On fractional order computational solutions of low-pass electrical transmission line model with the sense of conformable derivative. Alex. Eng. J. 2023, 81, 87–100. [Google Scholar]
- Iqbal, M.A.; Miah, M.M.; Ali, H.S.; Shahen, N.H.M.; Deifalla, A. New applications of the fractional derivative to extract abundant soliton solutions of the fractional order PDEs in mathematics physics. Partial Differ. Equ. Appl. Math. 2024, 9, 100597. [Google Scholar] [CrossRef]
- Justin, M.; David, V.; Shahen, N.H.M.; Sylvere, A.S. Sundry optical solitons and modulational instability in Sasa-Satsuma model. Opt. Quantum Electron. 2022, 54, 1–15. [Google Scholar] [CrossRef]
- Shahen, N.H.M.; Ali, M.S.; Rahman, M.M. Interaction among lump, periodic, and kink solutions with dynamical analysis to the conformable time-fractional Phi-four equation. Partial Differ. Equ. Appl. Math. 2021, 4, 100038. [Google Scholar] [CrossRef]
- Shahen, N.H.M.; Foyjonnesa Bashar, M.H.; Tahseen, T.; Hossain, S. Solitary and rogue wave solutions to the conformable time fractional modified kawahara equation in mathematical physics. Adv. Math. Phys. 2021, 2021, 6668092. [Google Scholar] [CrossRef]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Hendy, A.S.; Zaky, M.A. Combined Galerkin spectral/finite difference method over graded meshes for the generalized nonlinear fractional Schrödinger equation. Nonlinear Dyn. 2021, 103, 2493–2507. [Google Scholar] [CrossRef]
- Li, X.; Wen, J.; Li, D. Mass-and energy-conserving difference schemes for nonlinear fractional Schrödinger equations. Appl. Math. Lett. 2021, 111, 106686. [Google Scholar] [CrossRef]
- Liaqat, M.I.; Akgül, A. A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. Chaos Solitons Fractals 2022, 162, 112487. [Google Scholar] [CrossRef]
- Kaabar, M.K.; Martínez, F.; Gómez-Aguilar, J.F.; Ghanbari, B.; Kaplan, M.; Günerhan, H. New approximate analytical solutions for the nonlinear frac-tional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method. Math. Methods Appl. Sci. 2021, 44, 11138–11156. [Google Scholar] [CrossRef]
- Zhang, K.; Han, T. The optical soliton solutions of nonlinear Schrödinger equation with quintic non-Kerr nonlinear term. Results Phys. 2023, 48, 106397. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 2015, 293, 238–251. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 2016, 71, 1114–1128. [Google Scholar] [CrossRef]
- Yang, Z. A class of linearized energy-conserved finite difference schemes for nonlinear space-fractional Schrödinger equations. Int. J. Comput. Math. 2016, 93, 609–626. [Google Scholar] [CrossRef]
- Klein, C.; Sparber, C.; Markowich, P. Numerical study of fractional nonlinear Schrödinger equations. Proc. Math. Phys. Eng. Sci. 2014, 470, 20140364. [Google Scholar] [CrossRef]
- LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems; SIAM: Philadelphia, PA, USA, 2007. [Google Scholar]
- Chen, Z.; Gou, Q. Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays. Appl. Math. Comput. 2019, 348, 465–478. [Google Scholar] [CrossRef]
E(n) | Q(n) | |
---|---|---|
1.6 | 2.46 | 2.27 |
1.7 | 2.52 | 3.40 |
1.8 | 2.61 | 4.82 |
2 | 2.98 | 8.79 |
DCT | N | 32 | 64 | 128 | 256 |
Error | 2.6 | 6.42 | 1.61 | 4.02 | |
CPU(s) | 0.2 | 0.4 | 1.63 | 4.12 | |
NO DCT | N | 32 | 64 | 128 | 256 |
Error | 2.6 | 6.42 | 6.42 | - | |
CPU(s) | 1.97 | 52.36 | 1815.55 | - |
a = 1.8 | a = 1.9 | a = 2.0 | |
---|---|---|---|
e() | e() | e() | |
1/100 | 1.49 | 8.19 | 7.67 |
1/200 | 3.73 | 2.06 | 1.92 |
1/400 | 9.32 | 5.12 | 4.82 |
1/800 | 2.26 | 1.28 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Peng, S.; Cao, Y.; Zhang, R. The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform. Mathematics 2024, 12, 1110. https://doi.org/10.3390/math12071110
Wang P, Peng S, Cao Y, Zhang R. The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform. Mathematics. 2024; 12(7):1110. https://doi.org/10.3390/math12071110
Chicago/Turabian StyleWang, Peiyao, Shangwen Peng, Yihao Cao, and Rongpei Zhang. 2024. "The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform" Mathematics 12, no. 7: 1110. https://doi.org/10.3390/math12071110
APA StyleWang, P., Peng, S., Cao, Y., & Zhang, R. (2024). The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform. Mathematics, 12(7), 1110. https://doi.org/10.3390/math12071110