Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI
Abstract
:1. Introduction
- Cognitive Neuroscience Research: Segmentation supports research on memory and spatial navigation, deepening understanding of neural mechanisms underlying cognition [14].
- Personalized Medicine: Variations in hippocampal structure impact disease susceptibility and treatment responses. Accurate segmentation enables tailored treatment plans based on individual neuroanatomy [15].
2. Related Works
2.1. Semantic Segmentation on Hippocampus
2.2. Deep Neural Networks for Multimodal MRI Hippocampus Segmentation
3. Methodology
3.1. Proposed Segmentation Framework
3.1.1. Framework Overview
3.1.2. Gated Cross-Attention Unit
3.2. Hippocampus Segmentation with the Proposed Framework
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Baselines and Evaluation Metrics
5. Results and Discussions
5.1. Comparative Experimental Results
5.2. Analytical Experimental Results
5.2.1. Comparisons: Single-Contrast vs. Multi-Contrast
5.2.2. Segmentation with Attention Mechanisms
5.2.3. Comparisons of Single Contrast of Diffusion MRI
5.2.4. Parameter Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Clarendon Press: Oxford, UK, 1978. [Google Scholar]
- Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 1957, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971, 34, 171–175. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Squire, L.R.; Stark, C.E.; Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci. 2004, 27, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Berdugo-Vega, G.; Arias-Gil, G.; López-Fernández, A.; Artegiani, B.; Wasielewska, J.M.; Lee, C.C.; Lippert, M.T.; Kempermann, G.; Takagaki, K.; Calegari, F. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat. Commun. 2020, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Topolnik, L.; Tamboli, S. The role of inhibitory circuits in hippocampal memory processing. Nat. Rev. Neurosci. 2022, 23, 476–492. [Google Scholar] [CrossRef]
- Tzilivaki, A.; Tukker, J.J.; Maier, N.; Poirazi, P.; Sammons, R.P.; Schmitz, D. Hippocampal GABAergic interneurons and memory. Neuron 2023, 111, 3154–3175. [Google Scholar] [CrossRef]
- Poh, J.H.; Vu, M.A.T.; Stanek, J.K.; Hsiung, A.; Egner, T.; Adcock, R.A. Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory formation. Nat. Commun. 2022, 13, 6729. [Google Scholar] [CrossRef]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s disease neuro-imaging initiative (ADNI): Clinical characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R., Jr.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef]
- Duncan, J.S.; Winston, G.P.; Koepp, M.J.; Ourselin, S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016, 15, 420–433. [Google Scholar] [CrossRef]
- Gondi, V.; Hermann, B.P.; Mehta, M.P.; Tomé, W.A. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e487–e493. [Google Scholar] [CrossRef]
- Moser, M.B.; Rowland, D.C.; Moser, E.I. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 2015, 7, a021808. [Google Scholar] [CrossRef]
- Klöppel, S.; Peter, J.; Ludl, A.; Pilatus, A.; Maier, S.; Mader, I.; Heimbach, B.; Frings, L.; Egger, K.; Dukart, J.; et al. Applying automated MR-based diagnostic methods to the memory clinic: A prospective study. J. Alzheimer’s Dis. 2015, 47, 939–954. [Google Scholar] [CrossRef]
- Seiger, R.; Hammerle, F.P.; Godbersen, G.M.; Reed, M.B.; Spurny-Dworak, B.; Handschuh, P.; Klöbl, M.; Unterholzner, J.; Gryglewski, G.; Vanicek, T.; et al. Comparison and reliability of hippocampal subfield segmentations within FreeSurfer utilizing T1-and T2-weighted multispectral MRI data. Front. Neurosci. 2021, 15, 666000. [Google Scholar] [CrossRef]
- Manjón, J.V.; Romero, J.E.; Coupe, P. A novel deep learning based hippocampus subfield segmentation method. Sci. Rep. 2022, 12, 1333. [Google Scholar] [CrossRef]
- Samara, A.; Raji, C.; Li, Z.; Hershey, T. Comparison of Hippocampal Subfield Segmentation Agreement between 2 Automated Protocols across the Adult Life Span. Am. J. Neuroradiol. 2021, 42, 1783–1789. [Google Scholar] [CrossRef]
- Kulaga-Yoskovitz, J.; Bernhardt, B.C.; Hong, S.J.; Mansi, T.; Liang, K.E.; Van Der Kouwe, A.J.; Smallwood, J.; Bernasconi, A.; Bernasconi, N. Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset. Sci. Data 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Yan, H.; Wang, K.; Ma, Y.; Shen, L.; Xu, M.; Initiative, A.D.N. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 2020, 208, 116459. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Li, M.W.; Zhang, S.; Zhang, Y.; Zhao, L.Y.; Lei, H.; Oishi, K.; Zhu, W.Z. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods. Neuroradiology 2013, 55, 1027–1038. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; et al. The Human Connectome Project: A data acquisition perspective. Neuroimage 2012, 62, 2222–2231. [Google Scholar] [CrossRef]
- Ly, M.; Foley, L.; Manivannan, A.; Hitchens, T.K.; Richardson, R.M.; Modo, M. Mesoscale diffusion magnetic resonance imaging of the ex vivo human hippocampus. Hum. Brain Mapp. 2020, 41, 4200–4218. [Google Scholar] [CrossRef]
- Modo, M.; Sparling, K.; Novotny, J.; Perry, N.; Foley, L.M.; Hitchens, T.K. Mapping mesoscale connectivity within the human hippocampus. Neuroimage 2023, 282, 120406. [Google Scholar] [CrossRef]
- Jones, D.K. Diffusion MRI: Theory, Methods, and Applications; Oxford University Press: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Modo, M.; Hitchens, T.K.; Liu, J.R.; Richardson, R.M. Detection of Aberrant Hippocampal Mossy Fiber Connections: Ex Vivo Mesoscale Diffusion MRI and Microtractography with Histological Validation in a Patient with Uncontrolled Temporal Lobe Epilepsy; Technical report; Wiley Online Library: New York, NY, USA, 2016. [Google Scholar]
- Ke, J.; Foley, L.M.; Hitchens, T.K.; Richardson, R.M.; Modo, M. Ex vivo mesoscopic diffusion MRI correlates with seizure frequency in patients with uncontrolled mesial temporal lobe epilepsy. Hum. Brain Mapp. 2020, 41, 4529–4548. [Google Scholar] [CrossRef]
- Hett, K.; Ta, V.T.; Catheline, G.; Tourdias, T.; Manjón, J.V.; Coupé, P. Multimodal hippocampal subfield grading for Alzheimer’s disease classification. Sci. Rep. 2019, 9, 13845. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Jia, H.; Tang, H.; Ma, G.; Cai, W.; Huang, H.; Zhan, L.; Xia, Y. A convolutional neural network with pixel-wise sparse graph reasoning for COVID-19 lesion segmentation in CT images. Comput. Biol. Med. 2023, 155, 106698. [Google Scholar] [CrossRef]
- Fu, X.; Sun, Z.; Tang, H.; Zou, E.M.; Huang, H.; Wang, Y.; Zhan, L. 3D bi-directional transformer U-Net for medical image segmentation. Front. Big Data 2023, 5, 1080715. [Google Scholar] [CrossRef]
- Dai, S.; Ye, K.; Zhao, K.; Cui, G.; Tang, H.; Zhan, L. Constrained Multiview Representation for Self-supervised Contrastive Learning. arXiv 2024, arXiv:2402.03456. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Fang, F.; Zhou, T.; Song, Z.; Lu, J. MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors. Remote Sens. 2023, 15, 1142. [Google Scholar] [CrossRef]
- Duvernoy, H.M.; Cattin, F.; Risold, P.Y.; Salvolini, U.; Scarabine, U. The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI; Number 3; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Fel, J.; Ellis, C.; Turk-Browne, N. Automated and manual segmentation of the hippocampus in human infants. Dev. Cogn. Neurosci. 2023, 60, 101203. [Google Scholar] [CrossRef]
- Dalton, M.A.; Zeidman, P.; Barry, D.N.; Williams, E.; Maguire, E.A. Segmenting subregions of the human hippocampus on structural magnetic resonance image scans: An illustrated tutorial. Brain Neurosci. Adv. 2017, 1, 2398212817701448. [Google Scholar] [CrossRef]
- Carmichael, O.T.; Aizenstein, H.A.; Davis, S.W.; Becker, J.T.; Thompson, P.M.; Meltzer, C.C.; Liu, Y. Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage 2005, 27, 979–990. [Google Scholar] [CrossRef]
- Nobakht, S.; Schaeffer, M.; Forkert, N.D.; Nestor, S.; Black, S.E.; Barber, P.; Initiative, A.D.N. Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 2021, 21, 2427. [Google Scholar] [CrossRef]
- Plassard, A.J.; McHugo, M.; Heckers, S.; Landman, B.A. Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy. In Proceedings of the Medical Imaging 2017: Image Processing, Orlando, FL, USA, 11–16 February 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10133, pp. 666–672. [Google Scholar]
- Chupin, M.; Gérardin, E.; Cuingnet, R.; Boutet, C.; Lemieux, L.; Lehéricy, S.; Benali, H.; Garnero, L.; Colliot, O. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 2009, 19, 579–587. [Google Scholar] [CrossRef]
- Morra, J.H.; Tu, Z.; Apostolova, L.G.; Green, A.E.; Avedissian, C.; Madsen, S.K.; Parikshak, N.; Toga, A.W.; Jack, C.R., Jr.; Schuff, N.; et al. Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Neuroimage 2009, 45, S3–S15. [Google Scholar] [CrossRef]
- Henschel, L.; Conjeti, S.; Estrada, S.; Diers, K.; Fischl, B.; Reuter, M. Fastsurfer-a fast and accurate deep learning based neuro-imaging pipeline. NeuroImage 2020, 219, 117012. [Google Scholar] [CrossRef]
- Tang, H.; Ma, G.; Guo, L.; Fu, X.; Huang, H.; Zhan, L. Contrastive brain network learning via hierarchical signed graph pooling model. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]
- Kim, M.; Wu, G.; Shen, D. Unsupervised deep learning for hippocampus segmentation in 7.0 Tesla MR images. In Proceedings of the Machine Learning in Medical Imaging: 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, 22 September 2013; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–8. [Google Scholar]
- Zheng, Q.; Liu, B.; Gao, Y.; Bai, L.; Cheng, Y.; Li, H. HGM-cNet: Integrating hippocampal gray matter probability map into a cascaded deep learning framework improves hippocampus segmentation. Eur. J. Radiol. 2023, 162, 110771. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Z. A combined deep-learning and lattice Boltzmann model for segmentation of the hippocampus in MRI. Sensors 2020, 20, 3628. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, C.; Zhao, D.; Gao, L.; Gao, J. DeepHipp: Accurate segmentation of hippocampus using 3D dense-block based on attention mechanism. BMC Med. Imaging 2023, 23, 158. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, Y.; Shi, F.; Ma, G.; Jewells, V.; Shen, D. Segmenting hippocampal subfields from 3T MRI with multi-modality images. Med. Image Anal. 2018, 43, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Guo, Y. Multi-class multimodal semantic segmentation with an improved 3D fully convolutional networks. Neurocomputing 2020, 391, 220–226. [Google Scholar] [CrossRef]
- Yeh, F.C.; Verstynen, T.D.; Wang, Y.; Fernández-Miranda, J.C.; Tseng, W.Y.I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 2013, 8, e80713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Van Zijl, P.C.; Kim, J.; Pearlson, G.D.; Mori, S. DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 2006, 81, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Leow, A.D.; Jahanshad, N.; Chiang, M.C.; Barysheva, M.; Lee, A.D.; Toga, A.W.; McMahon, K.L.; De Zubicaray, G.I.; Wright, M.J.; et al. How does angular resolution affect diffusion imaging measures? Neuroimage 2010, 49, 1357–1371. [Google Scholar] [CrossRef]
- Jin, Z.; Bao, Y.; Wang, Y.; Li, Z.; Zheng, X.; Long, S.; Wang, Y. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain. Surg. Radiol. Anat. 2019, 41, 1019–1028. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning where to look for the pancreas. In Proceedings of the Medical Imaging with Deep Learning (MIDL), Amsterdam, The Netherlands, 4–6 July 2018. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Dolz, J.; Desrosiers, C.; Ben Ayed, I. IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet. In Proceedings of the International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging; Springer: Berlin/Heidelberg, Germany, 2018; pp. 130–143. [Google Scholar]
- Ye, K.; Tang, H.; Dai, S.; Guo, L.; Liu, J.Y.; Wang, Y.; Leow, A.; Thompson, P.M.; Huang, H.; Zhan, L. Bidirectional mapping with contrastive learning on multimodal neuro-imaging data. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, ON, Canada, 8–12 October 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 138–148. [Google Scholar]
- Guo, L.; Zhang, Y.; Tang, H.; Mackin, S.R.; Thompson, P.M.; Huang, H.; Zhan, L. Investigating the effect of neuropsychiatric symptoms on Alzheimer’s diagnosis using multi-modal brain networks. Alzheimer’s Dement. 2023, 19, e080376. [Google Scholar] [CrossRef]
- Tang, H.; Guo, L.; Fu, X.; Wang, Y.; Mackin, S.; Ajilore, O.; Leow, A.D.; Thompson, P.M.; Huang, H.; Zhan, L. Signed graph representation learning for functional-to-structural brain network mapping. Med. Image Anal. 2023, 83, 102674. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.T.; Buitrago, P.; Hanna, E.; Sanielevici, S.; Scibek, R.; Nystrom, N.A. Bridges-2: A platform for rapidly-evolving and data intensive research. In Practice and Experience in Advanced Research Computing; ACM: New York, NY, USA, 2021; pp. 1–4. [Google Scholar]
Methods | Multi-Contrast Diffusion MRI of Hippocampus | ||
---|---|---|---|
DSC | mIoU | HD | |
U-Net [21] | 81.55 ± 0.95 | 83.94 ± 1.06 | 16.56 ± 0.82 |
DeepLabv3+ [59] | 83.32 ± 1.49 | 83.62 ± 1.79 | 14.29 ± 1.16 |
U2Net [58] | 83.67 ± 0.75 | 85.25 ± 0.68 | 11.30 ± 0.95 |
Attention U-Net [60] | 85.77 ± 2.24 | 87.24 ± 1.26 | 8.64 ± 1.80 |
IVD-Net [62] | 84.75 ± 1.61 | 85.91 ± 1.77 | 9.79 ± 1.04 |
NNU-Net [61] | 88.19 ± 1.43 | 91.06 ± 0.77 | 6.69 ± 0.85 |
Ours | 89.74 ± 1.32 | 92.27 ± 0.97 | 6.26 ± 1.11 |
Methods | Contrast Map | Evaluation Metrics | ||
---|---|---|---|---|
DSC | mIoU | HD | ||
U-Net | FA | 80.53 ± 1.20 | 82.21 ± 0.98 | 15.85 ± 1.79 |
MD | 79.20 ± 1.38 | 79.96 ± 1.66 | 16.26 ± 2.09 | |
AD | 77.69 ± 2.62 | 79.55 ± 1.83 | 19.05 ± 1.13 | |
RD | 78.02 ± 1.03 | 79.01 ± 0.84 | 17.04 ± 0.85 | |
Ours wo/Attention | All Modals | 87.72 ± 1.29 | 90.05 ± 1.08 | 8.52 ± 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang , H.; Dai, S.; Zou, E.M.; Liu, G.; Ahearn, R.; Krafty, R.; Modo, M.; Zhan, L. Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI. Mathematics 2024, 12, 940. https://doi.org/10.3390/math12070940
Tang H, Dai S, Zou EM, Liu G, Ahearn R, Krafty R, Modo M, Zhan L. Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI. Mathematics. 2024; 12(7):940. https://doi.org/10.3390/math12070940
Chicago/Turabian StyleTang , Haoteng, Siyuan Dai, Eric M. Zou, Guodong Liu, Ryan Ahearn, Ryan Krafty, Michel Modo, and Liang Zhan. 2024. "Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI" Mathematics 12, no. 7: 940. https://doi.org/10.3390/math12070940
APA StyleTang , H., Dai, S., Zou, E. M., Liu, G., Ahearn, R., Krafty, R., Modo, M., & Zhan, L. (2024). Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI. Mathematics, 12(7), 940. https://doi.org/10.3390/math12070940