Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation
Abstract
:1. Introduction
2. System Description and Mathematical Model
2.1. System Description
2.2. Markov Chain and Balance Equations
3. System Analysis
3.1. Infinitesimal Generator and Matrices
3.2. Stationary Distribution
3.3. Ergodicity
4. System Characteristics and Cost Function
4.1. System Characteristics
4.2. Cost Function
5. Numerical Illustration
5.1. Sensitivity Analysis
5.2. Optimization
Minimize: | y1(α, θ) = OC |
Minimize: | y2(α, θ) = 1-U |
Minimize: | y3(α, θ) = E[W] |
Subject to: | , |
α > 0, | |
θ > 0. |
Algorithm 1. Multi-Objective Genetic Algorithm |
Begin
|
- -
- Step 1: Normalize the three objective values for each solution.
- -
- Step 2: Multiply their respective weights and add these three values.
- -
- Step 3: Sort the values obtained in step 2, and the first solution is the optimal solution.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Kim, B. A survey of retrial queueing systems. Ann. Oper. Res. 2016, 247, 3–36. [Google Scholar] [CrossRef]
- Phung-Duc, T. Retrial Queueing Models: A Survey on Theory and Applications. arXiv 2019, arXiv:1906.09560. [Google Scholar]
- Ke, J.C.; Chang, F.M.; Liu, T.H. M/M/c balking retrial queue with vacation. Qual. Technol. Quant. Manag. 2019, 16, 54–66. [Google Scholar] [CrossRef]
- Zhang, Y. Strategic behavior in the constant retrial queue with a single vacation. RAIRO Oper. Res. 2020, 54, 569–583. [Google Scholar] [CrossRef]
- Liu, T.H.; Chang, F.M.; Ke, J.C.; Sheu, S.H. Optimization of retrial queue with unreliable servers subject to imperfect coverage and reboot delay. Qual. Technol. Quant. Manag. 2022, 19, 428–453. [Google Scholar] [CrossRef]
- Govindan, A.; Jayaraj, U. Analysis of mixed priority retrial queueing system with two way communication and working breakdown. J. Math. Model. 2018, 6, 195–212. [Google Scholar]
- Nazarov, A.; Phung-Duc, T.; Paul, S. Slow retrial asymptotics for a single server queue with two-way communication and Markov modulated Poisson Input. J. Syst. Sci. Syst. Eng. 2019, 28, 181–193. [Google Scholar] [CrossRef]
- Ayyappan, G.; Udayageetha, J.; Somasundaram, B. Analysis of non-pre-emptive priority retrial queueing system with two-way communication, Bernoulli vacation, collisions, working breakdown, immediate feedback and reneging. Int. J. Math. Oper. Res. 2020, 16, 480–498. [Google Scholar] [CrossRef]
- Kumar, M.S.; Dadlani, A.; Kim, K. Performance analysis of an unreliable M/G/1 retrial queue with two-way communication. Oper. Res. 2020, 20, 2267–2280. [Google Scholar]
- Ayyappan, G.; Gowthami, R. Analysis of MAP, PH2OA/PH1I, PH2O/1 retrial queue with vacation, feedback, two-way communication and impatient customers. Soft Comput. 2021, 25, 9811–9838. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, B.; Kim, J. Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication. Ann. Oper. Res. 2022, 310, 505–518. [Google Scholar] [CrossRef]
- Sztrik, J.; Tóth, Á.; Pintér, Á. The Effect of Operation Time of the Server on the Performance of Finite-Source Retrial Queues with Two-Way Communications to the Orbit. J. Math. Sci. 2022, 267, 196–204. [Google Scholar] [CrossRef]
- Tóth, Á.; Sztrik, J. Analysis of retrial queueing systems with two-way communication and impatient customers using simulation. Ann. Math. Et Inform. 2023, 58, 160–169. [Google Scholar] [CrossRef]
- Yang, D.Y.; Wu, C.H. Performance analysis and optimization of a retrial queue with working vacations and starting failures. Math. Comput. Model. Dyn. Syst. 2019, 25, 463–481. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Gao, S. An M/G/1 retrial queue with balking customers and Bernoulli working vacation interruption. Qual. Technol. Quant. Manag. 2019, 16, 511–530. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Gao, S. An M/G/1 retrial queue with single working vacation under Bernoulli schedule. RAIRO-Oper. Res. 2020, 54, 471–488. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, N. Performance analysis of retrial queueing Model with working vacation, interruption, waiting server, breakdown and repair. Int. J. Sci. Res. 2021, 13, 833–844. [Google Scholar] [CrossRef]
- Muthusamy, S.; Devadoss, N.; Ammar, S.I. Reliability and optimization measures of retrial queue with different classes of customers under a working vacation schedule. Discret. Dyn. Nat. Soc. 2022, 2022, 6806104. [Google Scholar] [CrossRef]
- Pazhani, S.; Murugan, B.; Keerthana, R. An M/G/1 feedback retrial queue with working vacation and a waiting server. J. Comput. 2023, 31, 61–79. [Google Scholar]
- Shanmugam, B.; Saravanarajan, M.C. Unreliable retrial queueing system with working vacation. AIMS Math. 2023, 8, 24196–24224. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, H.; Huo, H. Optimal queuing strategies for an M/G/1 retrial queue system with RWV and ISEV policies. ANZIAM J. 2024, 1–27. [Google Scholar] [CrossRef]
- Sundararaman, M.; Narasimhan, D.; Rajadurai, P. Performance Analysis of Two Different Types of Waiting Queues with Working Vacations. J. Math. 2024, 2024, 5829171. [Google Scholar] [CrossRef]
- Neut, M.F. Matrix-Geometric Solutions in Stochastic Models. Master’s Thesis, John Hopkins University, Baltimore, MD, USA, 1981. [Google Scholar]
- Phung-Duc, T.; Rogiest, W. Two Way Communication Retrial Queues with Balanced Call Blending. In Proceedings of the Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2012, Grenoble, France, 4–6 June 2012. [Google Scholar]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
λ | E[N] | 1-U | E[B] | E[V] |
---|---|---|---|---|
3 | 0.224 | 0.224 | 3.720 | 0.308 |
3.2 | 0.494 | 0.214 | 3.777 | 0.283 |
3.4 | 0.588 | 0.204 | 3.832 | 0.259 |
3.6 | 0.700 | 0.195 | 3.887 | 0.236 |
3.8 | 0.833 | 0.186 | 3.940 | 0.214 |
4 | 0.991 | 0.177 | 3.993 | 0.193 |
4.2 | 1.182 | 0.168 | 4.045 | 0.173 |
4.4 | 1.415 | 0.160 | 4.097 | 0.153 |
4.6 | 1.704 | 0.152 | 4.147 | 0.135 |
4.8 | 2.070 | 0.144 | 4.197 | 0.117 |
5 | 2.546 | 0.136 | 4.246 | 0.100 |
α | E[N] | 1-U | E[B] | E[V] |
---|---|---|---|---|
0 | 0.659 | 0.377 | 1.886 | 1.947 |
0.2 | 0.635 | 0.361 | 2.126 | 1.691 |
0.4 | 0.619 | 0.344 | 2.359 | 1.458 |
0.6 | 0.613 | 0.327 | 2.577 | 1.249 |
0.8 | 0.616 | 0.310 | 2.779 | 1.065 |
1 | 0.626 | 0.293 | 2.962 | 0.907 |
1.2 | 0.643 | 0.277 | 3.127 | 0.771 |
1.4 | 0.667 | 0.262 | 3.274 | 0.656 |
1.6 | 0.695 | 0.248 | 3.405 | 0.559 |
1.8 | 0.728 | 0.236 | 3.521 | 0.477 |
2 | 0.764 | 0.224 | 3.624 | 0.407 |
σ | E[N] | 1-U | E[B] | E[V] |
---|---|---|---|---|
3 | 8.602 | 0.173 | 4.107 | 0.049 |
4 | 3.314 | 0.174 | 4.065 | 0.102 |
5 | 2.170 | 0.175 | 4.041 | 0.134 |
6 | 1.669 | 0.176 | 4.025 | 0.154 |
7 | 1.389 | 0.176 | 4.013 | 0.168 |
8 | 1.209 | 0.177 | 4.005 | 0.179 |
9 | 1.083 | 0.177 | 3.998 | 0.187 |
10 | 0.991 | 0.177 | 3.993 | 0.193 |
b | E[N] | 1-U | E[B] | E[V] |
---|---|---|---|---|
0.0 | 0.000 | 0.225 | 3.697 | 0.302 |
0.1 | 0.045 | 0.221 | 3.725 | 0.292 |
0.2 | 0.101 | 0.216 | 3.755 | 0.281 |
0.3 | 0.172 | 0.210 | 3.787 | 0.270 |
0.4 | 0.262 | 0.205 | 3.822 | 0.257 |
0.5 | 0.376 | 0.198 | 3.860 | 0.243 |
0.6 | 0.526 | 0.192 | 3.900 | 0.228 |
0.7 | 0.723 | 0.185 | 3.945 | 0.211 |
0.8 | 0.991 | 0.177 | 3.993 | 0.193 |
0.9 | 1.365 | 0.169 | 4.046 | 0.173 |
1.0 | 1.908 | 0.160 | 4.104 | 0.151 |
# | α* | θ* | y2(α*, θ*) | y3(α*, θ*) | y1(α*, θ*) | # | α* | θ* | y2(α*, θ*) | y3(α*, θ*) | y1(α*, θ*) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0029 | 0.1719 | 0.3303 | 0.3469 | 328.0764 | 21 | 1.8214 | 6.1886 | 0.2302 | 0.2028 | 458.0735 |
2 | 11.9983 | 9.3615 | 0.0607 | 5.6859 | 887.9584 | 22 | 11.9658 | 7.9205 | 0.0608 | 5.5383 | 871.2552 |
3 | 0.0037 | 6.9089 | 0.4770 | 0.0577 | 362.5594 | 23 | 10.4485 | 7.6545 | 0.0682 | 2.3350 | 662.1581 |
4 | 0.0225 | 0.1094 | 0.2909 | 0.5078 | 329.4854 | 24 | 11.2708 | 8.7965 | 0.0639 | 3.4762 | 742.4771 |
5 | 11.6941 | 8.1659 | 0.0620 | 4.5257 | 807.2304 | 25 | 0.0034 | 4.6110 | 0.4753 | 0.0581 | 352.2698 |
6 | 9.1094 | 8.1264 | 0.0764 | 1.4475 | 604.6404 | 26 | 0.8523 | 7.8445 | 0.3177 | 0.1256 | 429.1866 |
7 | 9.8066 | 8.6442 | 0.0718 | 1.8235 | 632.9824 | 27 | 11.3963 | 9.2969 | 0.0634 | 3.7387 | 762.0079 |
8 | 1.3339 | 7.3381 | 0.2670 | 0.1639 | 447.7312 | 28 | 11.6304 | 7.6043 | 0.0623 | 4.3340 | 792.0429 |
9 | 8.3530 | 7.7555 | 0.0819 | 1.1600 | 582.2932 | 29 | 2.7920 | 5.0038 | 0.1808 | 0.2834 | 475.5974 |
10 | 1.4171 | 5.0161 | 0.2608 | 0.1703 | 438.9278 | 30 | 9.1510 | 8.3405 | 0.0761 | 1.4663 | 607.0263 |
11 | 3.0315 | 8.2727 | 0.1712 | 0.3045 | 496.8050 | 31 | 4.5492 | 1.8434 | 0.1310 | 0.4534 | 489.1407 |
12 | 11.9288 | 8.7767 | 0.0610 | 5.3783 | 865.2380 | 32 | 10.2003 | 7.3972 | 0.0695 | 2.1116 | 646.0564 |
13 | 11.5663 | 8.1376 | 0.0626 | 4.1553 | 783.1670 | 33 | 11.3412 | 8.5499 | 0.0636 | 3.6194 | 750.5374 |
14 | 10.9316 | 7.1698 | 0.0656 | 2.9075 | 697.3245 | 34 | 11.1095 | 7.7431 | 0.0647 | 3.1834 | 718.1778 |
15 | 0.0225 | 0.1094 | 0.2909 | 0.5078 | 329.4854 | 35 | 11.7452 | 8.9743 | 0.0618 | 4.6904 | 821.8985 |
16 | 0.4143 | 7.1925 | 0.3845 | 0.0905 | 399.4445 | 36 | 11.8315 | 8.6844 | 0.0614 | 4.9937 | 839.9988 |
17 | 1.9076 | 8.6592 | 0.2241 | 0.2100 | 473.0613 | 37 | 11.8663 | 8.8001 | 0.0612 | 5.1255 | 849.0706 |
18 | 10.7258 | 1.9636 | 0.0667 | 2.6367 | 653.5573 | 38 | 11.5096 | 7.4507 | 0.0628 | 4.0075 | 770.1729 |
19 | 7.7684 | 8.3220 | 0.0869 | 0.9913 | 572.4912 | 39 | 9.8691 | 8.6911 | 0.0715 | 1.8647 | 635.9991 |
20 | 0.0029 | 0.1719 | 0.3303 | 0.3469 | 328.0764 | 40 | 8.6137 | 8.1724 | 0.0799 | 1.2486 | 590.8052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-H.; Chiou, K.-C.; Chen, C.-M.; Chang, F.-M. Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation. Mathematics 2024, 12, 1163. https://doi.org/10.3390/math12081163
Liu T-H, Chiou K-C, Chen C-M, Chang F-M. Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation. Mathematics. 2024; 12(8):1163. https://doi.org/10.3390/math12081163
Chicago/Turabian StyleLiu, Tzu-Hsin, Kuo-Ching Chiou, Chih-Ming Chen, and Fu-Min Chang. 2024. "Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation" Mathematics 12, no. 8: 1163. https://doi.org/10.3390/math12081163
APA StyleLiu, T. -H., Chiou, K. -C., Chen, C. -M., & Chang, F. -M. (2024). Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation. Mathematics, 12(8), 1163. https://doi.org/10.3390/math12081163