Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics
Abstract
:1. Introduction
2. Theoretical Knowledge
2.1. Deriving Partial Derivatives Using Nonlocal Differential Operators
2.2. Elastic Constitutive of the Generalized Finite Difference Method
3. Numerical Simulation
3.1. Cantilever Beam Subjected to Shear Force
3.1.1. Error Analysis
3.1.2. Robustness Analysis
3.1.3. Convergence Analysis
3.2. Analysis of the Surrounding Rock Compression for a Circular Tunnel
3.2.1. Error Analysis
3.2.2. Robustness Analysis
3.2.3. Convergence Analysis
3.3. Homogeneous Slope Subjected to Self-Weight
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericksen, J.L. Special topics in elastostatics. Adv. Appl. Mech. 1977, 17, 189–244. [Google Scholar]
- Deeks, A.J.; Wolf, J. A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput. Mech. 2002, 28, 489–504. [Google Scholar] [CrossRef]
- Kamiński, M. Generalized perturbation-based stochastic finite element method in elastostatics. Comput. Struct. 2007, 85, 586–594. [Google Scholar] [CrossRef]
- Vadlamani, S.; Arun, C. A stochastic B-spline wavelet on the interval finite element method for beams. Comput. Struct. 2020, 233, 106246. [Google Scholar] [CrossRef]
- Mohammad, M.; Trounev, A.; Cattani, C. Stress state and waves in the lithospheric plate simulation: A 3rd generation AI architecture. Results Phys. 2023, 53, 106938. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Zhang, L. A simple technique to improve computational efficiency of meshless methods. Procedia Eng. 2012, 31, 1102–1107. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Huang, Q. The boundary element method with a fast multipole accelerated integration technique for 3D elastostatic problems with arbitrary body forces. J. Sci. Comput. 2017, 71, 1238–1264. [Google Scholar] [CrossRef]
- Hamzehei Javaran, S.; Shojaee, S. The solution of elastostatic and dynamic problems using the boundary element method based on spherical Hankel element framework. Int. J. Numer. Meth. Eng. 2017, 112, 2067–2086. [Google Scholar] [CrossRef]
- Bin, H.; Zhongrong, N.; Cong, L.; Zongjun, H. A fast multipole boundary element method based on higher order elements for analyzing 2-D elastostatic problems. Eng. Anal. Bound. Elem. 2021, 130, 417–428. [Google Scholar] [CrossRef]
- Vu, D.; Steinmann, P. A 2-D coupled BEM–FEM simulation of electro-elastostatics at large strain. Comput. Methods. Appl. Mech. Eng. 2010, 199, 1124–1133. [Google Scholar] [CrossRef]
- Gray, J.P.; Monaghan, J.J.; Swift, R. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 2001, 190, 6641–6662. [Google Scholar] [CrossRef]
- Shutov, A.; Klyuchantsev, V. On the application of SPH to solid mechanics. J. Phys. Conf. Ser. 2019, 1268, 012077. [Google Scholar] [CrossRef]
- El-Gammal, T.; Khalil, E.; Haridy, H.; Abo-Serie, E. Influence of smoothing length and virtual particles on SPH accuracy. Int. J. Mater. Mech. Manuf. 2013, 1, 166–170. [Google Scholar] [CrossRef]
- Atluri, S.; Zhu, T.-L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 2000, 25, 169–179. [Google Scholar] [CrossRef]
- Liu, M.; Liu, G. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Methods Eng. 2010, 17, 25–76. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 2000, 48, 175–209. [Google Scholar] [CrossRef]
- Silling, S.A.; Lehoucq, R.B. Peridynamic theory of solid mechanics. Adv. Appl. Mech. 2010, 44, 73–168. [Google Scholar]
- Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005, 83, 1526–1535. [Google Scholar] [CrossRef]
- Madenci, E.; Barut, A.; Futch, M. Peridynamic differential operator and its applications. Comput. Methods. Appl. Mech. Eng. 2016, 304, 408–451. [Google Scholar] [CrossRef]
- Madenci, E.; Barut, A.; Dorduncu, M. Peridynamic Differential Operator for Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 2019; Volume 10. [Google Scholar]
- Wan, J.; Yang, D.; Chu, X.; Qu, W. A micropolar peridynamic differential operator and simulation of crack propagation. Eng. Fract. Mech. 2022, 269, 108532. [Google Scholar] [CrossRef]
- Lei, J.; Sun, Y.; Wang, L. Static and dynamic analysis of couple-stress elastic structures by using peridynamic differential operator. Eng. Anal. Bound. Elem. 2023, 156, 20–33. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Xu, Y.; Huang, D. Analysis of nonlinear heat conduction problems with temperature-dependent conductivity using peridynamic differential operator. Int. J. Appl. Mech. 2022, 14, 2250047. [Google Scholar] [CrossRef]
- Liszka, T.; Orkisz, J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 1980, 11, 83–95. [Google Scholar] [CrossRef]
- Benito, J.; Urena, F.; Gavete, L. Influence of several factors in the generalized finite difference method. Appl. Math. Model. 2001, 25, 1039–1053. [Google Scholar] [CrossRef]
- Gavete, L.; Gavete, M.; Benito, J. Improvements of generalized finite difference method and comparison with other meshless method. Appl. Math. Model. 2003, 27, 831–847. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X. Theoretical analysis of the generalized finite difference method. Comput. Math. Appl. 2022, 120, 1–14. [Google Scholar] [CrossRef]
- Hidayat, M.I.P.; Fajarin, R. A meshless generalized finite difference method for 2D elasticity problems. Eng. Anal. Bound. Elem. 2020, 117, 89–103. [Google Scholar] [CrossRef]
- Suchde, P.; Kuhnert, J. A meshfree generalized finite difference method for surface PDEs. Comput. Math. Appl. 2019, 78, 2789–2805. [Google Scholar] [CrossRef]
- Benito, J.; Ureña, F.; Salete, E.; Muelas, A.; Gavete, L.; Galindo, R. Wave propagation in soils problems using the Generalized Finite Difference Method. Soil. Dyn. Earthq. Eng. 2015, 79, 190–198. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, X.; Zhao, H.; Zhan, W.; Xu, Y.; Liu, Y. Generalized finite difference method based meshless analysis for coupled two-phase porous flow and geomechanics. Eng. Anal. Bound. Elem. 2023, 146, 184–203. [Google Scholar] [CrossRef]
- Li, H.; Mulay, S.S. Meshless Methods and Their Numerical Properties; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Wang, J.; Liu, G. A point interpolation meshless method based on radial basis functions. Int. J. Numer. Meth. Eng. 2002, 54, 1623–1648. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, J.; Li, H.; Lam, K.; Kee, B.B. Radial point interpolation based finite difference method for mechanics problems. Int. J. Numer. Meth. Eng. 2006, 68, 728–754. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.; Li, C.G. Slope stability analysis based on elasto-plastic finite element method. Int. J. Numer. Meth. Eng. 2005, 64, 1871–1888. [Google Scholar] [CrossRef]
Method | N = 85 | N = 175 | N = 637 | N = 976 | N = 1701 | N = 3751 | |
---|---|---|---|---|---|---|---|
Cubic spline | 1.1559 × 10−6 | 1.0396 × 10−6 | 7.4807 × 10−7 | 6.7813 × 10−7 | 5.5154 × 10−7 | 4.1265 × 10−7 | |
1.3159 × 10−6 | 1.1633 × 10−6 | 8.9742 × 10−7 | 7.5859 × 10−7 | 6.6085 × 10−7 | 5.4193 × 10−7 | ||
Execution time (s) | 0.0221 | 0.0436 | 0.1532 | 0.2605 | 0.6728 | 1.6735 | |
Quintic spline | 1.1043 × 10−6 | 9.6119 × 10−7 | 7.0886 × 10−7 | 5.8304 × 10−7 | 4.8986 × 10−7 | 3.7597 × 10−7 | |
1.2215 × 10−6 | 1.1276 × 10−6 | 8.1298 × 10−7 | 6.8245 × 10−7 | 5.9064 × 10−7 | 4.8986 × 10−7 | ||
Execution time (s) | 0.0223 | 0.0483 | 0.1656 | 0.2906 | 0.6842 | 1.6972 | |
Gaussian | 1.8407 × 10−6 | 1.6557 × 10−6 | 1.3924 × 10−6 | 1.1752 × 10−6 | 1.0110 × 10−6 | 9.0412 × 10−7 | |
1.9360 × 10−6 | 1.7710 × 10−6 | 1.5148 × 10−6 | 1.2638 × 10−6 | 1.0894 × 10−6 | 1.0310 × 10−6 | ||
Execution time (s) | 0.0234 | 0.0443 | 0.1352 | 0.2557 | 0.6335 | 1.6421 | |
FEM | 1.5878 × 10−3 | 7.1529 × 10−4 | 1.8235 × 10−4 | 1.1561 × 10−4 | 6.3913 × 10−5 | 1.8732 × 10−5 | |
7.3210 × 10−2 | 4.3649 × 10−2 | 1.7055 × 10−2 | 1.2465 × 10−2 | 8.2747 × 10−3 | 2.4296 × 10−3 | ||
Execution time (s) | 0.0740 | 0.1238 | 0.3882 | 0.7605 | 1.4390 | 3.1675 |
Method | N = 209 | N = 551 | N = 975 | N = 1617 | |
---|---|---|---|---|---|
Cubic spline | 7.2163 × 10−3 | 5.7165 × 10−3 | 4.5403 × 10−3 | 3.4731 × 10−3 | |
8.4958 × 10−3 | 6.6441 × 10−3 | 5.3892 × 10−3 | 4.2186 × 10−3 | ||
Execution time (s) | 0.0912 | 0.1732 | 0.3984 | 0.8547 | |
Quintic spline | 6.1713 × 10−3 | 4.5487 × 10−3 | 3.1723 × 10−3 | 1.9475 × 10−3 | |
7.2931 × 10−3 | 5.5299 × 10−3 | 3.7452 × 10−3 | 2.4782 × 10−3 | ||
Execution time (s) | 0.1031 | 0.1973 | 0.4134 | 0.8835 | |
Gaussian | 9.9101 × 10−3 | 8.6321 × 10−3 | 7.3814 × 10−3 | 6.1756 × 10−3 | |
1. 0927 × 10−2 | 9.2074 × 10−3 | 7.6133 × 10−3 | 6.2943 × 10−3 | ||
Execution time (s) | 0.1074 | 0.1867 | 0.4007 | 0.8379 | |
FEM | 4.8610 × 10−4 | 2.5399 × 10−4 | 1.6901 × 10−4 | 1.1947 × 10−4 | |
8.0192 × 10−3 | 5.7098 × 10−3 | 4.4219 × 10−3 | 3.7964 × 10−3 | ||
Execution time (s) | 0.3944 | 0.7821 | 1.6741 | 3.5971 |
Method | Max | |
---|---|---|
Ux (m) | GFDM | 0.425927 |
FEM | 0.425957 | |
Uy (m) | GFDM | 6.30321 |
FEM | 6.30359 | |
σx (Pa) | GFDM | 2.10600 × 106 |
FEM | 2.09875 × 106 | |
σy (Pa) | GFDM | 4.89859 × 106 |
FEM | 4.88162 × 106 | |
τxy (Pa) | GFDM | 2.07472 × 105 |
FEM | 2.07541 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, C.; Zhuang, X.; Wang, Z. Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics. Mathematics 2024, 12, 1316. https://doi.org/10.3390/math12091316
Zhou Y, Li C, Zhuang X, Wang Z. Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics. Mathematics. 2024; 12(9):1316. https://doi.org/10.3390/math12091316
Chicago/Turabian StyleZhou, Yeying, Chunguang Li, Xinshan Zhuang, and Zhifen Wang. 2024. "Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics" Mathematics 12, no. 9: 1316. https://doi.org/10.3390/math12091316
APA StyleZhou, Y., Li, C., Zhuang, X., & Wang, Z. (2024). Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics. Mathematics, 12(9), 1316. https://doi.org/10.3390/math12091316