A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues
Abstract
:1. Introduction
- Question
- Is there a fixed point iterative scheme that can converge faster than other existing schemes in the literature and solve some problems in its application?
2. Preliminary
- 1.
- The iterative scheme in a real Banach space E defined by is said to be -stable if implies .
- 2.
- The iterative scheme defined by is said to be almost -stable if implies that .
3. Main Results
3.1. Convergence Analysis of the UO Iterative Process
- 1.
- 2.
- .
3.2. Rate of Convergence of Some Iteration Processes
3.3. Stability and Data Dependence Results
4. Application to Oxygen Diffusion Model
- There exists a constant such thatfor each and .
- .
5. Application to Boundary Value Problem via Green’s Function
5.1. Construction of Green’s Function
- G satisfies the associated boundary conditions:
- G is continuous at :
- is continuous at :
- has jump discontinuity at :
5.2. UO–Green Iterative Scheme
5.3. Convergence Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Okeke, G.A.; Ofem, A.E.; Işik, H. A faster iterative method for solving nonlinear third-order BVPs based on Green’s function. Bound. Value Probl. 2022, 2022, 103. [Google Scholar] [CrossRef]
- Okeke, G.A.; Udo, A.V.; Rasulov, Z. A novel Picard-Ishikawa-Green’s iterative scheme for solving third order boundary value problems. Math. Methods Appl. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Okeke, G.A.; Udo, A.V.; Alqahtani, R.T.; Kaplan, M.; Ahmed, W.E. A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green’s functions. AIMS Math. 2024, 9, 6468–6498. [Google Scholar] [CrossRef]
- Younis, M.; Abdou, A.A.N. Novel fuzzy contractions and applications to engineering science. Fractal Fract. 2024, 8, 28. [Google Scholar] [CrossRef]
- Longhi, S. Fractional Schrodinger equation in optics. Opt. Lett. 2015, 40, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, T.; Singh, A.P.; Agarwal, H. Modeling the under-actuated mechanical system with fractional order derivative. Progr. Fract. Differ. Appl. 2015, 1, 57–64. [Google Scholar]
- Xuan, C.F.; Jin, C.; Wei, H. Anomalous diffusion and fractional advection-diffusion equation. Acta Phys. Sin. 2005, 53, 1113–1117. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, X. Variational iteration method and homotopy perturbation method. In Modeling and Analysis of Modern Fluid Problems; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Chugh, R.; Kumar, V.; Kumar, S. Strong convergence of a new three step iterative scheme in Banach spaces. Am. J. Comput. Math. 2012, 2, 345–357. [Google Scholar] [CrossRef]
- Gürsoy, P.; Karakaya, V. A Picard-S hybrid iteration method for solving a differential equation with retarded argument. arXiv 2014, arXiv:1403.2546v2. [Google Scholar]
- Abbas, M.; Asghar, M.W.; De la Sen, M. Approximation of the solution of delay fractional differential equation using AA-iterative scheme. Mathematics 2022, 10, 273. [Google Scholar] [CrossRef]
- Uddin, I.; Garodia, C.; Abdeljawad, T.; Mlaiki, N. Convergence analysis of a novel iteration process with application to a fractional differential equation. Adv. Contin. Discret. Model. 2022, 2022, 16. [Google Scholar] [CrossRef]
- Çeliker, F.Ö. Convergence analysis for a Modified SP iterative method. Sci. World J. 2014, 2014, 840504. [Google Scholar] [CrossRef] [PubMed]
- Okeke, G. Convergence of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 2019, 30, 817–835. [Google Scholar] [CrossRef]
- Okeke, G.A.; Udo, A.V.; Alqahtani, R.T.; Hussain, N. A faster iterative scheme for solving nonlinear fractional differential equation of the Caputo type. AIMS Math. 2023, 8, 28488–28516. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, S.M.; Cho, Y.J. Convergence and almost stability of Ishikawa iterative scheme with errors for m-accretive operators. Comput. Math. Appl. 2004, 47, 767–778. [Google Scholar] [CrossRef]
- Berinde, V. Picard iteration converges faster than Mann iteration for a class of quasi-contractive operator. Fixed Point Theory Appl. 2004, 2004, 97–105. [Google Scholar] [CrossRef]
- Berinde, V. On the stability of some fixed procedure. Bul. Ştiinţ. Univ. Baia Mare Ser. B Mat.-Inform. 2002, XVIII, 7–14. [Google Scholar]
- Berinde, V. Summable almost stability of fixed point iteration procedures. Carpathian J. Math. 2003, 19, 81–88. [Google Scholar]
- Şultuz, Ş.M.; Grosan, T. Data dependence for Ishikawa iteration when dealing with contractive-like operators. Fixed Point Theory Appl. 2008, 2008, 242916. [Google Scholar] [CrossRef]
- Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Am. Math. Soc. 1991, 113, 727–731. [Google Scholar] [CrossRef]
- Osilike, M.O. Stability of the Mann and Ishikawa iteration procedure for ϕ-strong pseudocontractions and nonlinear equations of the ϕ-strongly accreetive type. J. Math. Anal. Appl. 1998, 227, 319–334. [Google Scholar] [CrossRef]
- Leach, R.M.; Treacher, D.F. ABC of oxygen. Oxygen transport-2. Tissue hypoxia. BMJ 1998, 317, 1370–1373. [Google Scholar] [CrossRef]
- Srivastava, V.; Rai, K.N. A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 2010, 51, 616–624. [Google Scholar] [CrossRef]
- Khuri, S.A.; Sayfy, A.; Zaveri, A. A new iteration method based on Green’s functions for the solution of PDEs. Int. J. Comput. Math. 2016, 3, 3091–3103. [Google Scholar] [CrossRef]
- Khuri, S.A.; Sayfy, A. Numerical solution of functional differential equations: A Green’s function-based iterative approach. Int. J. Comput. Math. 2018, 95, 1937–1949. [Google Scholar] [CrossRef]
- Ali, F.; Ali, J.; Uddin, I. A novel approach for the solution of BVPs via Green’s function and fixed point iterative method. J. Appl. Math. Comput. 2020, 66, 167–181. [Google Scholar] [CrossRef]
- Khuri, S.A.; Louhichi, I. A new fixed point iteration method for nonlinear third-order BVPs. Int. J. Comput. Math. 2021, 98, 2220–2232. [Google Scholar] [CrossRef]
Step | UO | Picard-S | F* | Picard–Ishikawa |
---|---|---|---|---|
1 | 2.5000000000 | 2.5000000000 | 2.5000000000 | 2.5000000000 |
2 | 2.1508560181 | 2.2416992188 | 2.2285156250 | 2.2651367188 |
3 | 2.0455150764 | 2.1168370247 | 2.1044387817 | 2.1405949593 |
4 | 2.0137324464 | 2.0564788352 | 2.0477317870 | 2.0745537723 |
5 | 2.0041432444 | 2.0273017807 | 2.0218149183 | 2.0395338851 |
6 | 2.0012500667 | 2.0131976381 | 2.0099700994 | 2.0209637692 |
7 | 2.0003771602 | 2.0063797176 | 2.0045566470 | 2.0111165299 |
8 | 2.0001137938 | 2.0030839455 | 2.0020825301 | 2.0058948005 |
9 | 2.0000343329 | 2.0014907745 | 2.0009517813 | 2.0031258561 |
10 | 2.0000103587 | 2.0007206380 | 2.0004349938 | 2.0016575585 |
11 | 2.0000031253 | 2.0003483553 | 2.0001988058 | 2.0008789592 |
12 | 2.0000009430 | 2.0001683944 | 2.0000908604 | 2.0004660887 |
13 | 2.0000002845 | 2.0000814016 | 2.0000415261 | 2.0002471545 |
14 | 2.0000000858 | 2.0000393494 | 2.0000189787 | 2.0001310595 |
15 | 2.0000000259 | 2.0000190214 | 2.0000086739 | 2.0000694973 |
16 | 2.0000000078 | 2.0000091949 | 2.0000039642 | 2.0000368526 |
17 | 2.0000000024 | 2.0000044448 | 2.0000018118 | 2.0000195420 |
18 | 2.0000000007 | 2.0000021486 | 2.0000008280 | 2.0000103626 |
19 | 2.0000000002 | 2.0000010386 | 2.0000003784 | 2.0000054950 |
20 | 2.0000000001 | 2.0000005021 | 2.0000001730 | 2.0000029139 |
21 | 2.0000000000 | 2.0000002427 | 2.0000000790 | 2.0000015451 |
22 | 2.0000000000 | 2.0000001173 | 2.0000000361 | 2.0000008193 |
23 | 2.0000000000 | 2.0000000567 | 2.0000000165 | 2.0000004345 |
24 | 2.0000000000 | 2.0000000274 | 2.0000000075 | 2.0000002304 |
25 | 2.0000000000 | 2.0000000133 | 2.0000000034 | 2.0000001222 |
Step | UO | CR | Uddin et al. | Modified SP |
---|---|---|---|---|
1 | 2.5000000000 | 2.5000000000 | 2.5000000000 | 2.5000000000 |
2 | 2.1508560181 | 2.2618408203 | 2.1713867188 | 2.2475585938 |
3 | 2.0455150764 | 2.1371212304 | 2.0587468147 | 2.1225705147 |
4 | 2.0137324464 | 2.0718078709 | 2.0201368476 | 2.0606867685 |
5 | 2.0041432444 | 2.0376044636 | 2.0069023765 | 2.0300470621 |
6 | 2.0012500667 | 2.0196927672 | 2.0023659513 | 2.0148768169 |
7 | 2.0003771602 | 2.0103127406 | 2.0008109853 | 2.0073657677 |
8 | 2.0001137938 | 2.0054005929 | 2.0002779842 | 2.0036469182 |
9 | 2.0000343329 | 2.0028281914 | 2.0000952856 | 2.0018056519 |
10 | 2.0000103587 | 2.0014810719 | 2.0000326614 | 2.0008940093 |
11 | 2.0000031253 | 2.0007756102 | 2.0000111955 | 2.0004426394 |
12 | 2.0000009430 | 2.0004061728 | 2.0000038375 | 2.0002191584 |
13 | 2.0000002845 | 2.0002127052 | 2.0000013154 | 2.0001085091 |
14 | 2.0000000858 | 2.0001113898 | 2.0000004509 | 2.0000537247 |
15 | 2.0000000259 | 2.0000583328 | 2.0000001546 | 2.0000266000 |
16 | 2.0000000078 | 2.0000305478 | 2.0000000530 | 2.0000131701 |
17 | 2.0000000024 | 2.0000159973 | 2.0000000182 | 2.0000065208 |
18 | 2.0000000007 | 2.0000083775 | 2.0000000062 | 2.0000032285 |
19 | 2.0000000002 | 2.0000043871 | 2.0000000021 | 2.0000015985 |
20 | 2.0000000001 | 2.0000022975 | 2.0000000007 | 2.0000007914 |
21 | 2.0000000000 | 2.0000012031 | 2.0000000003 | 2.0000003919 |
22 | 2.0000000000 | 2.0000006301 | 2.0000000001 | 2.0000001940 |
23 | 2.0000000000 | 2.0000003300 | 2.0000000000 | 2.0000000961 |
24 | 2.0000000000 | 2.0000001728 | 2.0000000000 | 2.0000000476 |
25 | 2.0000000000 | 2.0000000905 | 2.0000000000 | 2.0000000235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeke, G.A.; Udo, A.V.; Alharthi, N.H.; Alqahtani, R.T. A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues. Mathematics 2024, 12, 1339. https://doi.org/10.3390/math12091339
Okeke GA, Udo AV, Alharthi NH, Alqahtani RT. A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues. Mathematics. 2024; 12(9):1339. https://doi.org/10.3390/math12091339
Chicago/Turabian StyleOkeke, Godwin Amechi, Akanimo Victor Udo, Nadiyah Hussain Alharthi, and Rubayyi T. Alqahtani. 2024. "A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues" Mathematics 12, no. 9: 1339. https://doi.org/10.3390/math12091339
APA StyleOkeke, G. A., Udo, A. V., Alharthi, N. H., & Alqahtani, R. T. (2024). A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues. Mathematics, 12(9), 1339. https://doi.org/10.3390/math12091339