A Modified Depolarization Approach for Efficient Quantum Machine Learning
Abstract
:1. Introduction
1.1. Contribution
- Depolarization Channel Representation: We propose a modified representation of the depolarization channel for single-qubit quantum states.
- Kraus Operators Configuration: The proposed method contains only two Kraus operators.
- Pauli Matrices Utilization: Unlike the standard approach that uses three Pauli matrices, our channel only uses two, X and Z, Pauli matrices.
- Computational Efficiency: The proposed representation reduces the computational complexity from six to four matrix multiplications for each channel execution.
- Theoretical Verification: We rigorously prove the validity of our proposed Kraus operators and the modified channel.
- Experimental Validation: We empirically tested the proposed channel representation using a QML model on the Iris dataset. We evaluated the model performance across various circuit depths and depolarization rates.
1.2. Organization
2. Preliminaries
2.1. Quantum State and Quantum Gates
2.2. Depolarization Channel Representation
2.3. Quantum Machine Learning
3. Derivation
Alternative Expression of the Depolarizing Channel
4. Experiment
4.1. Quantum Circuit Behavior Analysis under Depolarization Channel up to m Times
4.2. Data Encoding
4.3. Variational Layers
4.4. Training
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [Google Scholar] [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Arunachalam, S.; Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 2021, 17, 1013–1017. [Google Scholar] [CrossRef]
- Sajjan, M.; Sureshbabu, S.H.; Kais, S. Quantum machine-learning for eigenstate filtration in two-dimensional materials. J. Am. Chem. Soc. 2021, 143, 18426–18445. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.D.; Wu, D.; Su, Z.E.; Chen, M.C.; Wang, X.L.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015, 114, 110504. [Google Scholar] [CrossRef] [PubMed]
- Ciliberto, C.; Herbster, M.; Ialongo, A.D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum machine learning: A classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170551. [Google Scholar] [CrossRef] [PubMed]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 2016, 18, 023023. [Google Scholar] [CrossRef]
- Rebentrost, P.; Schuld, M.; Wossnig, L.; Petruccione, F.; Lloyd, S. Quantum gradient descent and Newton’s method for constrained polynomial optimization. New J. Phys. 2016, 21, 073023. [Google Scholar] [CrossRef]
- Bittel, L.; Kliesch, M. Training Variational Quantum Algorithms Is NP-Hard. Phys. Rev. Lett. 2021, 127, 120502. [Google Scholar] [CrossRef]
- Rebentrost, P.; Lloyd, S. Quantum computational finance: Quantum algorithm for portfolio optimization. arXiv 2018, arXiv:1811.03975. [Google Scholar]
- Broadbent, A.; Schaffner, C. Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 2015, 78, 351–382. [Google Scholar] [CrossRef] [PubMed]
- Padamvathi, V.; Vardhan, B.; Krishna, A.V. Quantum Cryptography and Quantum Key Distribution Protocols: A Survey. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 556–562. [Google Scholar] [CrossRef]
- Lai, H.; Luo, M.; Pieprzyk, J.; Zhang, J.; Pan, L.; Li, S.; Orgun, M. Fast and simple high-capacity quantum cryptography with error detection. Sci. Rep. 2017, 7, 46302. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in Quantum Cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Harrow, A.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Du, Y.; Hsieh, M.; Liu, T.; You, S.; Tao, D. Learnability of quantum neural networks. PRX Quantum 2021, 2, 040337. [Google Scholar] [CrossRef]
- Khanal, B.; Rivas, P.; Orduz, J.; Zhakubayev, A. Quantum machine learning: A case study of grover’s algorithm. In Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2021; IEEE: Piscateville, NJ, USA, 2021; pp. 79–84. [Google Scholar]
- Cross, A.; Smith, G.; Smolin, J. Quantum learning robust against noise. Phys. Rev. A 2014, 92, 012327. [Google Scholar] [CrossRef]
- Du, Y.; Hsieh, M.; Liu, T.; Tao, D.; Liu, N. Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 2021, 3, 023153. [Google Scholar] [CrossRef]
- Huang, J.; Tsai, Y.; Yang, C.; Su, C.; Yu, C.M.; Chen, P.Y.; Kuo, S.Y. Certified Robustness of Quantum Classifiers against Adversarial Examples through Quantum Noise. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023. [Google Scholar]
- West, M.T.; Tsang, S.L.; Low, J.S.; Hill, C.D.; Leckie, C.; Hollenberg, L.C.; Erfani, S.M.; Usman, M. Towards quantum enhanced adversarial robustness in machine learning. Nat. Mach. Intell. 2023, 5, 581–589. [Google Scholar] [CrossRef]
- Lu, S.; Duan, L.M.; Deng, D.L. Quantum adversarial machine learning. Phys. Rev. Res. 2020, 2, 033212. [Google Scholar] [CrossRef]
- Skolik, A.; Mangini, S.; Bäck, T.; Macchiavello, C.; Dunjko, V. Robustness of quantum reinforcement learning under hardware errors. EPJ Quantum Technol. 2023, 10, 8. [Google Scholar] [CrossRef]
- Bai, T.; Luo, J.; Zhao, J.; Wen, B.; Wang, Q. Recent advances in adversarial training for adversarial robustness. arXiv 2021, arXiv:2102.01356. [Google Scholar]
- Kang, D.; Sun, Y.; Brown, T.; Hendrycks, D.; Steinhardt, J. Transfer of adversarial robustness between perturbation types. arXiv 2019, arXiv:1905.01034. [Google Scholar]
- Khanal, B.; Rivas, P. Evaluating the Impact of Noise on Variational Quantum Circuits in NISQ Era Devices. In Proceedings of the International Conference on Emergent and Quantum Technologies (ICEQT 2023), Las Vegas, NV, USA, 24–27 July 2023; pp. 1–7. [Google Scholar]
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, Y.; Luo, Y.; Tao, D. Towards understanding the power of quantum kernels in the NISQ era. Quantum 2021, 5, 531. [Google Scholar] [CrossRef]
- Khanal, B.; Rivas, P.; Orduz, J. Kernels and Quantum Machine Learning. In Proceedings of the International Conference on Emergent and Quantum Technologies (ICEQT 2022), Las Vegas, NV, USA, 25–28 July 2022; pp. 1–15. [Google Scholar]
- Piskor, T.; Reiner, J.; Zanker, S.; Vogt, N.; Marthaler, M.; Wilhelm, F.K.; Eich, F.G. Using gradient-based algorithms to determine ground-state energies on a quantum computer. Phys. Rev. A 2022, 105, 062415. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wootton, J.R.; Loss, D. High threshold error correction for the surface code. Phys. Rev. Lett. 2012, 109, 160503. [Google Scholar] [CrossRef] [PubMed]
- Fowler, A.G.; Mariantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 2012, 86, 032324. [Google Scholar] [CrossRef]
- Gottesman, D. Stabilizer Codes and Quantum Error Correction; California Institute of Technology: Pasadena, CA, USA, 1997. [Google Scholar]
- Urbanek, M.; Nachman, B.; Pascuzzi, V.R.; He, A.; Bauer, C.W.; de Jong, W.A. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett. 2021, 127, 270502. [Google Scholar] [CrossRef]
- Cai, Z. Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. Npj Quantum Inf. 2020, 7, 80. [Google Scholar] [CrossRef]
- Haug, T.; Self, C.; Kim, M. Quantum machine learning of large datasets using randomized measurements. Mach. Learn. Sci. Technol. 2023, 4, 015005. [Google Scholar] [CrossRef]
- Schuld, M.; Petruccione, F. Machine Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 2019, 4, 043001. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Schuld, M.; Bergholm, V.; Gogolin, C.; Izaac, J.; Killoran, N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A 2019, 99, 032331. [Google Scholar] [CrossRef]
Gate Count | Mean Difference | Standard Deviation | % of Differences above 0.001 |
---|---|---|---|
3 | 0 | 0 | 0% |
8 | 0.00023 | 0.00038 | 6% |
15 | 0.00065 | 0.00106 | 22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanal, B.; Rivas, P. A Modified Depolarization Approach for Efficient Quantum Machine Learning. Mathematics 2024, 12, 1385. https://doi.org/10.3390/math12091385
Khanal B, Rivas P. A Modified Depolarization Approach for Efficient Quantum Machine Learning. Mathematics. 2024; 12(9):1385. https://doi.org/10.3390/math12091385
Chicago/Turabian StyleKhanal, Bikram, and Pablo Rivas. 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning" Mathematics 12, no. 9: 1385. https://doi.org/10.3390/math12091385
APA StyleKhanal, B., & Rivas, P. (2024). A Modified Depolarization Approach for Efficient Quantum Machine Learning. Mathematics, 12(9), 1385. https://doi.org/10.3390/math12091385