Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms
Abstract
:1. Introduction
- (1)
- A class of CR-DNNs model is established, and an effective event-triggered controller is designed based on time sampling.
- (2)
- Some sufficient criteria are obtained to ensure the event-triggered synchronization of CR-DNNs, which are composed of several linear matrix inequalities.
- (3)
- The effectiveness of the event-triggered strategy and theoretical results are verified using numerical examples.
2. Preliminaries and Model Description
3. Main Results
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Humaidi, A.; Kadhim, T. Spiking versus traditional neural networks for character recognition on FPGA platform. J. Telecommun. Electron. Comput. Eng. 2018, 10, 109–115. [Google Scholar]
- Luo, X.; Jiang, H.; Li, J.; Chen, S.; Xia, Y. Modeling and controlling delayed rumor propagation with general incidence in heterogeneous networks. Int. J. Mod. Phys. C 2024, 35, 2450020. [Google Scholar] [CrossRef]
- Nasser, A.; Hasan, A.; Humaidi, A. DL-AMDet: Deep learning-based malware detector for android. Intell. Syst. Appl. 2024, 21, 200318. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Rajchakit, G.; Fardoun, H. Stability and synchronization criteria for fractional order competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function. J. Frankl. Inst. 2019, 356, 2212–2239. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C. Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, H.; Kao, Y.; Zhang, L.; Hu, C. Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J. Frankl. Inst. 2021, 358, 7650–7673. [Google Scholar] [CrossRef]
- Yu, J.; Xiong, K.; Hu, C. Synchronization analysis for quaternion-valued delayed neural networks with impulse and inertia via a direct technique. Mathematics 2024, 12, 949. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Z.; Ge, M. A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 905–915. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Wang, L.; Hu, C.; Jiang, H.; Li, Z. Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks. Nonlinear Anal. Model. Control 2023, 28, 804–823. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Yu, J.; Jiang, H.; Wen, S. Fixed-time synchronization of coupled memristive complex-valued neural networks. Chaos Solitons Fractals 2021, 148, 110993. [Google Scholar] [CrossRef]
- Wang, L.; He, H.; Zeng, Z. Global synchronization of fuzzy memristive neural networks with discrete and distributed delays. IEEE Trans. Fuzzy Syst. 2020, 28, 2022–2034. [Google Scholar] [CrossRef]
- Mao, K.; Liu, X.; Cao, J.; Hu, Y. Finite-time bipartite synchronization of coupled neural networks with uncertain parameters. Phys. A Stat. Mech. Its Appl. 2022, 585, 126431. [Google Scholar] [CrossRef]
- Selvaraj, P.; Sakthivel, R.; Kwon, O. Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation. Neural Netw. 2018, 105, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.; He, Z. Cluster synchronization of delayed coupled neural networks: Delay-dependent distributed impulsive control. Neural Netw. 2021, 142, 34–43. [Google Scholar] [CrossRef]
- Luo, M.; Cheng, J.; Liu, X.; Zhong, S. An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control. Appl. Math. Comput. 2019, 344–345, 163–182. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Park, J.; Lam, H.; He, P. Quasisynchronization of reaction-diffusion neural networks under deception attacks. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7833–7844. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.; Martynyuk, A.; Stamov, T. Almost periodic dynamics in a new class of impulsive reaction-diffusion neural networks with fractional-like derivatives. Chaos, Solitons Fractals 2021, 143, 110647. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Cai, Z.; Tan, X.; Chen, R. Finite-time synchronization of reaction-diffusion neural networks with time-varying parameters and discontinuous activations. Neurocomputing 2021, 447, 272–281. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, J.; Chen, X.; Shi, K.; Shen, H. Anti-disturbance synchronization of fuzzy genetic regulatory networks with reaction-diffusion. J. Frankl. Inst. 2022, 359, 3733–3748. [Google Scholar] [CrossRef]
- Hu, W.; Zhu, Q. Spatial-temporal dynamics of a non-monotone reaction-diffusion Hopfield’s neural network model with delays. Neural Comput. Appl. 2022, 34, 11199–11212. [Google Scholar] [CrossRef]
- Rao, R.; Huang, J.; Li, X. Stability analysis of nontrivial stationary solution and constant equilibrium point of reaction-diffusion neural networks with time delays under Dirichlet zero boundary value. Neurocomputing 2021, 445, 105–120. [Google Scholar] [CrossRef]
- Mongolian, S.; Kao, Y.; Wang, C.; Xia, H. Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks. J. Frankl. Inst. 2021, 358, 877–894. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Huang, T.; Ren, S.; Wu, J. Passivity analysis of coupled reaction-diffusion neural networks with dirichlet boundary conditions. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2148–2159. [Google Scholar] [CrossRef]
- Cai, R.; Kou, C. Mittag-Leffler stabilization for coupled fractional reaction-diffusion neural networks subject to boundarymatched disturbance. Math. Methods Appl. Sci. 2023, 46, 3143–3156. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, Y.; Wen, S.; Huang, T.; Zeng, Z. Passivity analysis of coupled neural networks with reaction-diffusion terms and mixed delays. J. Frankl. Inst. 2018, 355, 8915–8933. [Google Scholar] [CrossRef]
- Li, X.; Song, X.; Ning, Z.; Lu, J. Quasi-synchronization of hybrid coupled reaction-diffusion neural networks with parameter mismatches via time-space sampled-data control. Int. J. Control Autom. Syst. 2021, 19, 3087–3100. [Google Scholar] [CrossRef]
- Cao, Y.; Kao, Y.; Park, J.; Bao, H. Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6473–6483. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Jiang, H.; Hu, C.; Abdurahman, A. Synchronization of hybrid coupled reaction-diffusion neural networks with time delays via generalized intermittent control with spacial sampled-data. Neural Netw. 2018, 105, 75–87. [Google Scholar] [CrossRef]
- Wu, T.; Xiong, L.; Cao, J.; Park, J.; Cheng, J. Synchronization of coupled reaction-diffusion stochastic neural networks with time-varying delay via delay-dependent impulsive pinning control algorithm. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105777. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X. Synchronization and control for directly coupled reaction-diffusion neural networks with multiple weights and hybrid coupling. Neurocomputing 2022, 487, 144–156. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Bao, H.; Zhang, L.; Jiang, H.; Li, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks. Neurocomputing 2022, 511, 290–298. [Google Scholar] [CrossRef]
- Cai, X.; Shi, K.; She, K.; Zhong, S.; Kwon, O.; Tang, Y. Voluntary defense strategy and quantized sample-data control for T-S fuzzy networked control systems with stochastic cyber-attacks and its application. Appl. Math. Comput. 2022, 423, 126975. [Google Scholar] [CrossRef]
- Qi, W.; Park, J.; Zong, G.; Cao, J.; Cheng, J. Synchronization for quantized semi-markov switching neural networks in a finite time. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1264–1275. [Google Scholar] [CrossRef]
- Lu, B.; Jiang, H.; Hu, C.; Abudurahman, A.; Liu, M. H∞ output synchronization of directed coupled reaction-diffusion neural networks via event-triggered quantized control. J. Frankl. Inst. 2021, 358, 4458–4482. [Google Scholar] [CrossRef]
- Yang, X.; Cao, J.; Yang, Z. Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J. Control Optim. 2013, 51, 3486–3510. [Google Scholar] [CrossRef]
- Tang, H.; Duan, S.; Hu, X.; Wang, L. Passivity and synchronization of coupled reaction-diffusion neural networks with multiple time-varying delays via impulsive control. Neurocomputing 2018, 318, 30–42. [Google Scholar] [CrossRef]
- Shanmugam, L.; Mani, P.; Rajan, R.; Joo, Y. Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication. IEEE Trans. Cybern. 2020, 50, 911–922. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Li, Z.; Li, H.; Hu, C. New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters. Chaos Solitons Fractals 2023, 175, 114041. [Google Scholar] [CrossRef]
- Hu, X.; Wang, L.; Zhang, C.; Wan, X.; He, Y. Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control. Sci. China Inf. Sci. 2023, 175, 114041. [Google Scholar] [CrossRef]
- Gu, Z.; Yue, D.; Ann, C.; Yan, S.; Xie, X. Segment-weighted information-based event-triggered mechanism for networked control systems. IEEE Trans. Cybern. 2023, 53, 5336–5345. [Google Scholar] [CrossRef]
- Ge, X.; Han, Q.; Zhang, X.; Ding, D. Dynamic event-triggered control and estimation: A survey. Int. J. Autom. Comput. 2021, 18, 857–886. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, Y.; Cheng, Z.; Xiao, X.; Liu, H. Event-triggered control for coupled reaction-diffusion complex network systems with finite-time synchronization. Phys. A Stat. Mech. Its Appl. 2021, 562, 125219. [Google Scholar] [CrossRef]
- Liu, L.; Bao, H. Event-triggered impulsive synchronization of coupled delayed memristive neural networks under dynamic and static conditions. Neurocomputing 2022, 504, 109–122. [Google Scholar] [CrossRef]
- Jin, Y.; Qi, W.; Zong, G. Finite-time synchronization of delayed semi-markov neural networks with dynamic event-triggered scheme. Int. J. Control Autom. Syst. 2021, 19, 2297–2308. [Google Scholar] [CrossRef]
- Vadivel, R.; Hammachukiattikul, P.; Gunasekaran, N.; Saravanakumar, R.; Dutta, H. Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme. Chaos Solitons Fractals 2021, 150, 111212. [Google Scholar] [CrossRef]
- Selvaraj, P.; Kwon, O.; Lee, S.; Sakthivel, R. Equivalent-input-disturbance estimator-based event-triggered control design for master-slave neural networks. Neural Netw. 2021, 143, 413–424. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Udhayakumar, K.; Gunasekaran, D.; Rakkiyappan, R. Event-triggered impulsive control design for synchronization of inertial neural networks with time delays. Neurocomputing 2022, 483, 322–332. [Google Scholar] [CrossRef]
- Cai, J.; Yi, C.; Wu, Y.; Liu, D.; Zhong, D. Leader-following consensus of nonlinear singular switched multi-agent systems via sliding mode control. Asian J. Control 2024, 1–14. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Ho, D. Quantized synchronization control of networked nonlinear systems: Dynamic quantizer design with event-triggered mechanism. IEEE Trans. Cybern. 2023, 53, 184–196. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, H.; Teng, Z. Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans. Neural Netw. 2010, 21, 67–81. [Google Scholar]
- Arslan, E.; Vadivel, R.; Syed, A.M.; Arik, S. Event-triggered H∞ filtering for delayed neural networks via sampled-data. Neural Netw. 2017, 91, 11–21. [Google Scholar] [CrossRef]
- Dong, T.; Wang, A.; Zhu, H.; Liao, X. Event-triggered synchronization for reaction-diffusion complex networks via random sampling. Phys. A Stat. Mech. Its Appl. 2018, 495, 454–462. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, J.; Lü, J. Pinning adaptive synchronization of a general complex dynamical network. Automatica 2008, 44, 996–1003. [Google Scholar] [CrossRef]
- Chen, W.; Luo, S.; Zhang, W. Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2696–2710. [Google Scholar] [CrossRef]
- Luo, L.; Li, L.; Huang, W. Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects. Math. Comput. Simul. 2024, 219, 491–504. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Jiang, H.; Alsaedi, A. Graph theory-based finite-time synchronization of fractional-order complex dynamical networks. J. Frankl. Inst. 2018, 355, 5771–5789. [Google Scholar] [CrossRef]
- Li, L.; Cui, Q.; Cao, J.; Qiu, J.; Sun, Y. Exponential synchronization of coupled inertial neural networks with hybrid delays and stochastic impulses. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Zhang, G.; Li, Z. Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage. AIMS Math. 2024, 9, 9128–9151. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
A | diag(0.2,0.2,0.2) | D | diag(0.5,0.4,0.3) |
diag(1,1,1) | L | diag(1,1,1) | |
C | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aili, A.; Chen, S.; Zhang, S. Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms. Mathematics 2024, 12, 1409. https://doi.org/10.3390/math12091409
Aili A, Chen S, Zhang S. Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms. Mathematics. 2024; 12(9):1409. https://doi.org/10.3390/math12091409
Chicago/Turabian StyleAili, Abulajiang, Shenglong Chen, and Sibao Zhang. 2024. "Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms" Mathematics 12, no. 9: 1409. https://doi.org/10.3390/math12091409
APA StyleAili, A., Chen, S., & Zhang, S. (2024). Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms. Mathematics, 12(9), 1409. https://doi.org/10.3390/math12091409