Fuzzy Hilbert Transform of Fuzzy Functions
Abstract
:1. Introduction
2. Preliminaries
3. Fuzzy Fourier Transform for Fuzzy Functions
- (FzFT1)
- Linearity. Let , , ; then, .
- (FzFT2)
- Time shifting property. .
- (FzFT3)
- Frequency shifting property. .
- (FzFT4)
- Scale shifting. , .
- Linearity.
- Time shifting property.
- Frequency shifting property.
- Scale shifting.
4. Poisson Integral Formula for Fuzzy Functions
5. Hilbert Transform for Fuzzy Functions
6. The Properties of Hilbert Transform of Fuzzy Functions
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Information and Control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Ying, M. Fuzzy Topology Based on Residuated Lattice-Valued Logic. Acta Math. Sin. 2001, 17, 89–102. [Google Scholar] [CrossRef]
- Azad, K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 1981, 82, 14–32. [Google Scholar] [CrossRef]
- Katsaras, A.; Petalas, C. A unified theory of fuzzy topologies fuzzy proximities and fuzzy uniformities. Rev. Roum. Math. Pures Appl. 1983, 28, 845–856. [Google Scholar]
- Wang, G. A new fuzzy compactness defined by fuzzy nets. J. Math. Anal. Appl. 1983, 94, 1–23. [Google Scholar]
- Jin, Q.; Li, L. On the embedding of convex spaces in stratified L-convex spaces. SpringerPlus 2016, 5, 1610. [Google Scholar] [CrossRef]
- Pang, B.; Shi, F. Subcategories of the category of L-convex spaces. Fuzzy Sets Syst. 2017, 313, 61–74. [Google Scholar] [CrossRef]
- Katsaras, A. Fuzzy topological vector spaces I. Fuzzy Sets Syst. 1981, 6, 85–95. [Google Scholar] [CrossRef]
- Fang, J.; Yan, C. Induced I (L)-fuzzy topological vector spaces. Fuzzy Sets Syst. 2001, 121, 293–299. [Google Scholar] [CrossRef]
- Wang, F.; Du, S.; Sun, W.; Huang, Q.; Su, J. A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar. J. Acoust. Soc. Am. 2017, 141, 3117–3122. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G. On the completeness of fuzzy measure-space. Fuzzy Sets Syst. 1999, 102, 345–351. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Li, R.; Qiao, Z. Extensions of a class of semi-continuous fuzzy measures. Fuzzy Sets Syst. 1998, 94, 397–401. [Google Scholar]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Towards fuzzy differential calculus part 1: Integration of fuzzy mappings. Fuzzy Sets Syst. 1982, 8, 1–17. [Google Scholar] [CrossRef]
- Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [Google Scholar] [CrossRef]
- Abuhijleh, E.A.; Massa’deh, M.; Sheimat, A.; Alkouri, A. Complex fuzzy groups based on Rosenfeld’s approach. WSEAS Trans. Math. 2021, 20, 368–377. [Google Scholar] [CrossRef]
- Das, P.S. Fuzzy groups and level subgroups. J. Math. Anal. Appl. 1981, 84, 264–269. [Google Scholar] [CrossRef]
- Shu, R. Measures of fuzzy subgroups. Proyecciones 2010, 29, 41–48. [Google Scholar]
- Xu, W.; Peng, C.; Guo, T.; Chen, C. Exploration of instantaneous frequency for local control assessment in real-time hybrid simulation. Earthq. Eng. Eng. Vib. 2024, 23, 995–1008. [Google Scholar] [CrossRef]
- Hua, Q.; Chen, Z.; He, H.; Tan, J.; Chen, H.; Li, G.; Song, P.; Zhao, B.; Jiang, X. Multiple Matching Attenuation Based on Curvelet Domain Extended Filtering. J. Ocean. Univ. China 2024, 23, 924–932. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Displacement measurement method based on laser self-mixing interference in the presence of speckle. Chin. Opt. Lett. 2020, 18, 051201. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhang, M.; Zhao, Y.; Zou, J.; Chen, T. Phase-unwrapping algorithm combined with wavelet transform and Hilbert transform in self-mixing interference for individual microscale particle detection. Chin. Opt. Lett. 2023, 21, 041204. [Google Scholar] [CrossRef]
- Liang, H.; Sun, Y.; Huang, Z.; Jiang, C.; Zhang, Z.; Kan, L. Reconstruction of Fabry–Perot cavity interferometer nanometer micro-displacement based on Hilbert transform. Chin. Opt. Lett. 2021, 19, 091202. [Google Scholar] [CrossRef]
- Perfilieva, I. Fuzzy transforms: A challenge to conventional transforms. Adv. Imaging Electron Phys. 2007, 147, 137–196. [Google Scholar]
- Perfilieva, I. Fuzzy transforms: Theory and applications. Fuzzy Sets Syst. 2006, 157, 993–1023. [Google Scholar] [CrossRef]
- Murali, V. Fuzzy points of equivalent fuzzy subsets. Inf. Sci. 2004, 158, 277–288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z. Fuzzy Hilbert Transform of Fuzzy Functions. Mathematics 2025, 13, 289. https://doi.org/10.3390/math13020289
Yan Z. Fuzzy Hilbert Transform of Fuzzy Functions. Mathematics. 2025; 13(2):289. https://doi.org/10.3390/math13020289
Chicago/Turabian StyleYan, Zhibo. 2025. "Fuzzy Hilbert Transform of Fuzzy Functions" Mathematics 13, no. 2: 289. https://doi.org/10.3390/math13020289
APA StyleYan, Z. (2025). Fuzzy Hilbert Transform of Fuzzy Functions. Mathematics, 13(2), 289. https://doi.org/10.3390/math13020289