Backward Anticipated Social Optima: Input Constraints and Partial Information
Abstract
:1. Introduction
2. Problem Formulation
- is -adapted, continuous, such that
- (A1)
- There exists a probability mass vector such that ,
- (A2)
- , , , . If , and are identically distributed and the common distribution is denoted by .
- (A3)
- (), , .
- (A4)
- , , , , , , (), , , .
3. Stochastic Optimal Control Problem for the Agents
3.1. Backward Person-by-Person Optimality
3.2. Decentralized Strategy
4. Consistency Condition
- (A5)
- There exist and positive constants such that for t and all coefficients
- (A6)
5. Asymptotic -Optimality
5.1. Agent Perturbation
5.2. Asymptotic Optimality
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bensoussan, A.; Sung, K.; Yam, S.; Yung, S. Linear-quadratic mean field games. J. Optim. Theory Appl. 2016, 169, 496–529. [Google Scholar] [CrossRef]
- Buckdahn, R.; Li, J.; Peng, S.; Rainer, C. Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 2017, 45, 824–878. [Google Scholar] [CrossRef]
- Carmona, R.; Delarue, F. Probabilistic analysis of mean-field games. SIAM J. Control Optim. 2013, 51, 2705–2734. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Nie, T. Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 2018, 56, 2835–2877. [Google Scholar] [CrossRef]
- Lasry, J.M.; Lions, P.L. Mean field games. Jpn. J. Math. 2007, 2, 229–260. [Google Scholar] [CrossRef]
- Nguyen, S.; Nguyen, D.; Yin, G. A stochastic maximum principle for switching diffusions using conditional mean-fields with applications to control problems. ESAIM Control Optim. Calc. Var. 2020, 26, 69. [Google Scholar] [CrossRef]
- Nourian, M.; Caines, P.E. ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 2013, 51, 3302–3331. [Google Scholar] [CrossRef]
- Arabneydi, J.; Mahajan, A. Team-optimal solution of finite number of mean-field coupled LQG subsystems. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 5308–5313. [Google Scholar]
- Du, K.; Wu, Z. Social optima in mean field linear-quadratic-Gaussian models with control input constraint. Syst. Control Lett. 2022, 162, 105174. [Google Scholar] [CrossRef]
- Huang, J.; Wang, B.; Yong, J. Social optima in mean field linear-quadratic-Gaussian control with volatility uncertainty. SIAM J. Control Optim. 2021, 59, 825–856. [Google Scholar] [CrossRef]
- Huang, M.; Caines, P.E.; Malhamé, R.P. Social optima in mean field LQG control: Centralized and decentralized strategies. IEEE Trans. Autom. Control 2012, 57, 1736–1751. [Google Scholar] [CrossRef]
- Huang, M.; Nguyen, S. Linear-Quadratic Mean Field Social Optimization with a Major Player. arXiv 2019, arXiv:1904.03346. [Google Scholar]
- Nie, T.; Wang, S.; Wu, Z. Linear-quadratic delayed mean-field social optimization. Appl. Math. Optim. 2024, 89, 4. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Zhang, J. Mean field linear-quadratic control: Uniform stabilization and social optimality. Automatica 2020, 121, 109088. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J. Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters. SIAM J. Control Optim. 2017, 55, 429–456. [Google Scholar] [CrossRef]
- Wang, S. Rational expectations: An approach of anticipated linear-quadratic social optima. Int. J. Control 2024, 97, 2444–2466. [Google Scholar] [CrossRef]
- Barreiro-Gomez, J.; Duncan, T.; Tembine, H. Linear-quadratic mean-field-type games: Jump-diffusion process with regime switching. IEEE Trans. Autom. Control 2019, 64, 4329–4336. [Google Scholar] [CrossRef]
- Chen, Y.; Bušić, A.; Meyn, S.P. State estimation for the individual and the population in mean field control with application to demand dispatch. IEEE Trans. Autom. Control 2016, 62, 1138–1149. [Google Scholar] [CrossRef]
- Nuno, G.; Moll, B. Social optima in economies with heterogeneous agents. Rev. Econ. Dyn. 2018, 28, 150–180. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Their Applications; Horwood: New York, NY, USA, 1997. [Google Scholar]
- ksendal, B.; Sulem, A. A maximum principle for optimal control of stochastic systems with delay, with applications to finance. Optim. Control Partial. Differ. Equ. Conf. 2001, 64–79. [Google Scholar]
- ksendal, B.; Sulem, A. Optimal stochastic impulse control with delayed reaction. Appl. Math. Optim. 2008, 58, 243–255. [Google Scholar] [CrossRef]
- Bismut, J. An introductory approach to duality in optimal stochastic control. SIAM Rev. 1978, 20, 62–78. [Google Scholar] [CrossRef]
- Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [Google Scholar] [CrossRef]
- Duffie, D.; Epstein, L. Stochastic differential utility. Econometrica 1992, 60, 353–394. [Google Scholar] [CrossRef]
- Karoui, N.E.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Karoui, N.E.; Peng, S.; Quenez, M.C. A dynamic maximum principle for the optimization of recursive utilities under constraints. Ann. Appl. Probab. 2001, 11, 664–693. [Google Scholar] [CrossRef]
- Feng, X.; Huang, J.; Wang, S. Social optima of backward linear-quadratic-Gaussian mean-field teams. Appl. Math. Optim. 2021, 84, S651–S694. [Google Scholar] [CrossRef]
- Huang, J.; Wang, G.; Xiong, J. A maximum principle for partial information backward stochastic control problems with application. SIAM J. Control Optim. 2009, 48, 2106–2117. [Google Scholar] [CrossRef]
- Huang, J.; Wang, S.; Wu, Z. Backward mean-field linear-quadratic-Gaussian (LQG) games: Full and partial information. IEEE Trans. Autom. Control 2016, 61, 3784–3796. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Xiong, J. Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. 2019, 80, 223–250. [Google Scholar] [CrossRef]
- Lim, A.E.; Zhou, X.Y. Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 2001, 40, 450–474. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Z. The maximum principle for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 2009, 54, 1230–1242. [Google Scholar] [CrossRef]
- Xu, W. A maximum principle for optimal control for a class of controlled systems. J. Austral. Math. Soc. Ser. B 1996, 38, 172–181. [Google Scholar] [CrossRef]
- Peng, S.; Yang, Z. Anticipated backward stochastic differential equations. Ann. Probab. 2009, 37, 877–902. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Z. Maximum principle for the stochastic optimal control problem with delay and application. Automatica 2010, 46, 1074–1080. [Google Scholar] [CrossRef]
- Huang, J.; Li, N. Linear-quadratic mean-field game for stochastic delayed systems. IEEE Trans. Automat. Control 2018, 63, 2722–2729. [Google Scholar] [CrossRef]
- Menoukeu-Pamen, O. Optimal control for stochastic delay system under model uncertainty: A stochastic differential game approach. J. Optim. Theory Appl. 2015, 167, 998–1031. [Google Scholar] [CrossRef]
- Yu, Z. The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls. Automatica 2012, 48, 2420–2432. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, J.; Shi, J. A linear-quadratic optimal control problem of stochastic differential equations with delay and partial information. Syst. Control Lett. 2021, 157, 105046. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X. Stochastic linear quadratic control with conic control constraints on an infinite time horizon. SIAM J. Control Optim. 2004, 43, 1120–1150. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X. Constrained stochastic LQ control with random coefficients and applications to portfolio selection. SIAM J. Control Optim. 2005, 44, 444–466. [Google Scholar] [CrossRef]
- Li, X.; Zhou, X.; Lim, A. Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 2002, 40, 1540–1555. [Google Scholar] [CrossRef]
- Pardoux, E.; Tang, S. Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Related Fields 1999, 114, 123–150. [Google Scholar] [CrossRef]
- Buckdahn, R.; Li, J.; Peng, S. Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Their Appl. 2009, 119, 3133–3154. [Google Scholar] [CrossRef]
- Darling, R.; Pardoux, E. Backward SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 1997, 25, 1135–1159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Backward Anticipated Social Optima: Input Constraints and Partial Information. Mathematics 2025, 13, 306. https://doi.org/10.3390/math13020306
Wang S. Backward Anticipated Social Optima: Input Constraints and Partial Information. Mathematics. 2025; 13(2):306. https://doi.org/10.3390/math13020306
Chicago/Turabian StyleWang, Shujun. 2025. "Backward Anticipated Social Optima: Input Constraints and Partial Information" Mathematics 13, no. 2: 306. https://doi.org/10.3390/math13020306
APA StyleWang, S. (2025). Backward Anticipated Social Optima: Input Constraints and Partial Information. Mathematics, 13(2), 306. https://doi.org/10.3390/math13020306