Efficient Numerical Schemes for a Heterogeneous Reaction–Diffusion System with Applications
Abstract
:1. Introduction
- at .
- approaches 1 as x approaches ∞.
- .
2. Spectral Schemes for the RDS
2.1. Bernstein Collocation Scheme
- Bernstein Basis Polynomials (BBPs) in
- if or ,
- for ,
- ,
- Bernstein Basis Polynomials (BBPs) in
- Two-Space Dimensional Implementation of the Scheme
2.2. Stability and Convergence of Bernstein Collocation Scheme
2.3. Fourier Spectral Method
2.4. Stability and Convergence of Fourier Collocation Method
3. A Multigrid Preconditioned Finite Difference Scheme
- Semi-implicit scheme 1
- Semi-implicit scheme 2
- Step 1:
- Solve , where , stands for the Jacobian of F at .
- Step 2:
- Update
Multigrid Algorithm
- Grid Hierarchy: In the multigrid approach, the problem is solved on a hierarchy of grids. The coarse grids capture the large-scale features of the solution, while the finer grids handle the small-scale details. By transferring information between these grids, the method can efficiently reduce errors and improve the convergence rates.
- Smoothing and Correction: The multigrid scheme involves two main components:
- Smoothing: This step reduces the high-frequency errors on a given grid. It usually involves iterative solvers like the Gauss–Seidel or Jacobi relaxation methods.
- Correction: After smoothing, the residual (error) is corrected using information from coarser grids. This process helps address low-frequency errors that are not effectively reduced by smoothing alone.
Algorithm 1 Multigrid V-Cycle method for |
Here is a more formal outline of the multigrid algorithm for solving .
STOP |
4. Numerical Results and Discussions
- MGGMRES means the Newton multigrid preconditioned GMRES scheme was used to solve the resulting full discrete system,
- GMRES means the unaccelerated Newton GMRES scheme was used to solve the resulting full discrete system,
- “NC” means the Newton GMRES did not converge as desired [11].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atkinson, K.; Han, W. Theoretical Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Lotka, A.J. Contribution to the theory of periodic reaction. J. Phys. Chem. 1910, 14, 271–274. [Google Scholar] [CrossRef]
- Van Gorder, R.A. Pattern formation from spatially heterogeneous reaction–diffusion systems. Phil. Trans. R. Soc. A 2021, 379, 20210001. [Google Scholar] [CrossRef] [PubMed]
- Garvie, M.R. Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB. Bull. Math. Biol. 2007, 69, 931–956. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Banerjee, M.; Ghorai, S. Effects of boundary conditions on pattern formation in a nonlocal prey–predator model. Appl. Math. Model. 2020, 79, 809–823. [Google Scholar] [CrossRef]
- Majeed, A.H.; Liu, D.; Ali, A.R.; Alotaibi, H.; Yin, Z.J.; Yi, R.H. Numerical simulations of energy storage performance in a close configuration: A Galerkin finite element-based computation. Alex. Eng. J. 2024, 104, 56–65. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mahmood, R.; Shahzad, H.; Pasha, A.A.; Raizah, Z.A.; Hosham, H.A.; Reddy, D.S.K.; Hafeez, M.B. Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations. Case Stud. Therm. Eng. 2023, 42, 102730. [Google Scholar] [CrossRef]
- Grave, M.; Viguerie, A.; Barros, G.F.; Reali, A.; Andrade, R.F.S.; Coutinho, A.L.G.A. Modeling nonlocal behavior in epidemics via a reaction–diffusion system incorporating population movement along a network. Comput. Methods Appl. Mech. Eng. 2022, 401 Pt A, 115541. [Google Scholar] [CrossRef]
- Davydovych, V.; Dutka, V.; Cherniha, R. Reaction–Diffusion Equations in Mathematical Models Arising in Epidemiology. Symmetry 2023, 15, 2025. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, R.; Xu, L.; Zhou, X.; Fu, X.; Zhong, W.; Grima, R. Efficient and scalable prediction of stochastic reaction–diffusion processes using graph neural networks. Math. Biosci. 2024, 375, 109248. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, S.K. A multigrid preconditioned numerical scheme for a reaction–diffusion system. Appl. Math. Comput. 2015, 254, 266–276. [Google Scholar] [CrossRef]
- Hammad, D.A. Application of Bernstein collocation method for solving the generalized regularized long wave equations. Ain Shams Eng. J. 2021, 12, 4081–4089. [Google Scholar] [CrossRef]
- Phillips, G.M. Bernstein Polynomials. In Interpolation and Approximation by Polynomials; CMS Books in Mathematics; Springer: New York, NY, USA, 2003; pp. 247–290. [Google Scholar]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Wang, H. The rate of convergence of q-Bernstein Polynomials for 0 < q < 1. J. Approx. Theory 2005, 136, 151–158. [Google Scholar]
- Farzana, H.; Bhowmik, S.K.; Islam, M.S. Orthonormal Bernstein Galerkin technique for computations of higher order eigenvalue problems. MethodsX 2023, 10, 102006. [Google Scholar] [CrossRef]
- Farzana, H.; Bhowmik, S.K.; Alim, M.A. Bernstein collocation technique for a class of Sturm-Liouville problems. Heliyon 2024, 10, e28888. [Google Scholar] [CrossRef] [PubMed]
- Natanson. Constructive Function Theory. Volume I: Uniform Approximation; Obolensky, A.N., Translator; Frederick Ungar: New York, NY, USA, 1964; p. 3, MR 0196340. [Google Scholar]
- Mirkov, N.; Rasuo, B. Bernstein Polynomial Collocation Method for Elliptic Boundary Value Problems. PAMM · Proc. Appl. Math. Mech. 2013, 13, 421–422. [Google Scholar] [CrossRef]
- Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Sanz-Serna, J.M. Product Approximation for Non-linear Problems in the Finite Element Method. IMA J. Numer. Anal. 1981, 1, 253–266. [Google Scholar] [CrossRef]
- Weideman, J.A.C.; Reddy, S.C. A MATLAB differentiation matrix suite. ACM TOMS 2000, 26, 465–519. [Google Scholar] [CrossRef]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Trefethen, L.N. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations. 1996, unpublished text. Available online: http://people.maths.ox.ac.uk/trefethen/pdetext.html (accessed on 1 September 2024).
- Bueno-Orovio, A.; Kay, D.; Burrage, K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 2014, 54, 937–954. [Google Scholar] [CrossRef]
- Suli, E.; Mayers, D.F. An Introduction to Numerical Analysis, 1st ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Thomee, V. Galerkin Finite Element Methods for Parabolic Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chen, K. Matrix Preconditioning Techniques and Applications; Cambridge Monographs on Applied and Computational Mathematics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bhowmik, S.K. Piecewise polynomial approximation of a nonlocal phase transitions model. J. Math. Anal. Appl. 2014, 420, 1069–1094. [Google Scholar] [CrossRef]
0.01 | 0.1 | 0.2 | 0.5 | |
---|---|---|---|---|
, GMRES | 6375 | 1156 | 860 | 630 |
, MGGMRES | 3800 | 610 | 480 | 262 |
, GMRES | 4220 | 640 | 295 | 262 |
, MGGMRES | 2250 | 422 | 176 | 242 |
0.001 | 0.01 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | |
---|---|---|---|---|---|---|---|
, GMRES | 132,672 | NC | NC | NC | NC | NC | NC |
, MGGMRES | 12,320 | 4476 | 2015 | 780 | 450 | 115 | 67 |
, GMRES | 121,482 | NC | NC | NC | NC | NC | NC |
, MGGMRES | 12,320 | 4432 | 1286 | 760 | 540 | 115 | 68 |
0.01 | 0.1 | 0.2 | 0.5 | 1 | |
---|---|---|---|---|---|
, GMRES | 4575 | 2286 | 475 | NCon | NCon |
, MGGMRES | 750 | 430 | 242 | 162 | 112 |
, GMRES | 4424 | 2254 | 1054 | NCon | NCon |
, MGGMRES | 650 | 424 | 255 | 168 | 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, S.; Arif, M.A.I.; Alqahtani, R.T.; Bhowmik, S.K. Efficient Numerical Schemes for a Heterogeneous Reaction–Diffusion System with Applications. Mathematics 2025, 13, 355. https://doi.org/10.3390/math13030355
Akhter S, Arif MAI, Alqahtani RT, Bhowmik SK. Efficient Numerical Schemes for a Heterogeneous Reaction–Diffusion System with Applications. Mathematics. 2025; 13(3):355. https://doi.org/10.3390/math13030355
Chicago/Turabian StyleAkhter, Samima, Md. Ariful Islam Arif, Rubayyi T. Alqahtani, and Samir Kumar Bhowmik. 2025. "Efficient Numerical Schemes for a Heterogeneous Reaction–Diffusion System with Applications" Mathematics 13, no. 3: 355. https://doi.org/10.3390/math13030355
APA StyleAkhter, S., Arif, M. A. I., Alqahtani, R. T., & Bhowmik, S. K. (2025). Efficient Numerical Schemes for a Heterogeneous Reaction–Diffusion System with Applications. Mathematics, 13(3), 355. https://doi.org/10.3390/math13030355