A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating
Abstract
:1. Introduction
2. An Overview of a TSTQLH
2.1. The Introduction of a TSTQLH
2.2. A Hypersonic Missile
2.3. Numerical Analyses
2.4. Control System
2.4.1. Electric Energy
2.4.2. Electrothermal Energy
3. Controller Design and Stability Proof
3.1. NESO
3.2. GNFTSMS
3.3. Controller Design
3.4. Stability Analyses
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Analyses
H | T | a | P | R | M | |
---|---|---|---|---|---|---|
a | 13,447.78 | 216.65 | 295.0696 | 15,385 | 0.2474 | 0.567376 |
b | 13,866.92 | 216.65 | 295.0696 | 14,401 | 0.2316 | 0.712766 |
c | 14,286.06 | 216.65 | 295.0696 | 13,480 | 0.2168 | 0.858156 |
d | 14,705.2 | 216.65 | 295.0696 | 12,618 | 0.2029 | 1.003546 |
e | 15,124.34 | 216.65 | 295.0696 | 11,811 | 0.1899 | 1.148936 |
f | 15,543.48 | 216.65 | 295.0696 | 11,055 | 0.1778 | 1.294326 |
g | 15,962.62 | 216.65 | 295.0696 | 10,348 | 0.1664 | 1.439716 |
h | 16,381.76 | 216.65 | 295.0696 | 9686 | 0.1558 | 1.585106 |
i | 16,800.9 | 216.65 | 295.0696 | 9067 | 0.1458 | 1.730496 |
j | 17,220.04 | 216.65 | 295.0696 | 8487 | 0.1365 | 1.875887 |
k | 17,648 | 216.65 | 295.0696 | 7933 | 0.1276 | 2.021277 |
l | 18,199.5 | 216.65 | 295.0696 | 7272 | 0.1169 | 2.113475 |
m | 18,751 | 216.65 | 295.0696 | 6667 | 0.1072 | 2.205674 |
n | 19,302.5 | 216.65 | 295.0696 | 6111 | 0.0983 | 2.297872 |
o | 19,854 | 216.65 | 295.0696 | 5602 | 0.0901 | 2.390071 |
p | 20,405.5 | 217.0555 | 295.3456 | 5136 | 0.0824 | 2.48227 |
q | 20,957 | 217.607 | 295.7206 | 4710 | 0.0754 | 2.574468 |
r | 21,508.5 | 218.1585 | 296.0951 | 4319 | 0.069 | 2.666667 |
s | 22,060 | 218.71 | 296.4691 | 3962 | 0.0631 | 2.758865 |
t | 22,611.5 | 219.2615 | 296.8427 | 3636 | 0.0578 | 2.851064 |
u | 23,163 | 219.813 | 297.2157 | 3337 | 0.0529 | 2.943262 |
v | 23,714.5 | 220.3645 | 297.5884 | 3063 | 0.0484 | 3.035461 |
w | 24,266 | 220.916 | 297.9605 | 2812 | 0.0443 | 3.12766 |
x | 24,817.5 | 221.4675 | 298.3322 | 2583 | 0.0406 | 3.219858 |
y | 25,369 | 222.019 | 298.7034 | 2372 | 0.0372 | 3.312057 |
z | 25,920.5 | 222.5705 | 299.0742 | 2182 | 0.0341 | 3.404255 |
A | 26,472 | 223.122 | 299.4445 | 2003 | 0.0313 | 3.546099 |
B | 27,838.62 | 224.4886 | 300.3601 | 1626 | 0.0252 | 3.909574 |
C | 29,205.23 | 225.8552 | 301.273 | 1321 | 0.0204 | 4.27305 |
D | 30,571.85 | 227.2219 | 302.1831 | 1075 | 0.0165 | 4.636525 |
E | 31,938.47 | 228.5885 | 303.0905 | 876 | 0.0134 | 5.0 |
Min | Max | Average | Standard Deviation | |
---|---|---|---|---|
10° | 0.70419 | 1 | 0.96685 | 0.033268 |
5° | 0.72885 | 1 | 0.96685 | 0.032548 |
0° | 0.69311 | 1 | 0.96649 | 0.033959 |
Pressure-Velocity Coupling | Spatial Discretization | |||||||
---|---|---|---|---|---|---|---|---|
Scheme | Gradient | Pressure | Density | Momentum | Turbulent Kinetic Energy | Specific Dissipation Rate | Energy | |
10° | Coupled | Green-Gauss Cell Based | Second Order | Second Order Upwind | Second Order Upwind | First Order Upwind | First Order Upwind | Second Order Upwind |
5° | Coupled | Least Squares Cell Based | Second Order | Second Order Upwind | Second Order Upwind | First Order Upwind | First Order Upwind | Second Order Upwind |
0° | Coupled | Least Squares Cell Based | Second Order | Second Order Upwind | Second Order Upwind | First Order Upwind | First Order Upwind | Second Order Upwind |
Pseudo Transient Explicit Relaxation Factors | ||||||||
---|---|---|---|---|---|---|---|---|
Pressure | Momentum | Density | Body Forces | Turbulent Kinetic Energy | Specific Dissipation Rate | Turbulent Viscosity | Energy | |
10° | 0.1 | 0.2 | 1 | 1 | 0.75 | 0.75 | 1 | 0.75 |
5° | 0.5 | 0.5 | 1 | 1 | 0.75 | 0.75 | 1 | 0.75 |
0° | 0.5 | 0.5 | 1 | 1 | 0.75 | 0.75 | 1 | 0.75 |
References
- Dong, Y.; Wang, E.; You, Y.; Yin, C.; Wu, Z. Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects. Energies 2019, 12, 240. [Google Scholar] [CrossRef]
- Chen, L.; Li, B.; Luo, K.; Xu, H.; Hu, M.; Li, H.; Wang, G.; Zhao, S.; Feng, J. Origins of high fracture toughness and glass-like thermal conductivity in Zr-Ta-O composites. J. Am. Ceram. Soc. 2022, 105, 6508–6516. [Google Scholar] [CrossRef]
- Haley, J.G.; McCall, T.P.; Maynard, I.W.; Chudoba, B. A sizing-based approach to evaluate hypersonic demonstrators: Demonstrator-carrier constraints. Aeronaut. J. 2020, 124, 1318–1349. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, G.; Zhu, M.; Shi, Z.; Bai, Z.; Alexandrov, I.V. Aerodynamic Heating Ground Simulation of Hypersonic Vehicles Based on Model-Free Control Using Super Twisting Nonlinear Fractional Order Sliding Mode. Mathematics 2022, 10, 1664. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, G.; Zhu, M.; Ouyang, H.; Shi, Z.; Bai, Z.; Alexandrov, I.V. Adaptive Neural Network Global Nonsingular Fast Terminal Sliding Mode Control for a Real Time Ground Simulation of Aerodynamic Heating Produced by Hypersonic Vehicles. Energies 2022, 15, 3284. [Google Scholar] [CrossRef]
- Liu, L.; Dai, G.; Zeng, L.; Wang, Z.; Gui, Y. Experimental Model Design and Preliminary Numerical Verification of Fluid-Thermal-Structural Coupling Problem. AIAA J. 2019, 57, 1715–1724. [Google Scholar] [CrossRef]
- Zhou, D.; Lu, Z.; Guo, T.; Shen, E.; Wu, J.; Chen, G. Fluid-thermal modeling of hypersonic vehicles via a gas-kinetic BGK scheme-based integrated algorithm. Aerosp. Sci. Technol. 2020, 99, 105748. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, Z.; Wang, Y.; Han, G. Advances in critical technologies for hypersonic and high-enthalpy wind tunnel. Chin. J. Aeronaut. 2020, 33, 3027–3038. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.a.; Zhai, J.; Wang, F.; Ye, Z. Experimental study on the aero-heating characteristics of waverider in the high enthalpy shock wave tunnel. J. Exp. Fluid Mech. 2019, 33, 52–57. [Google Scholar]
- Zhu, G.; Nie, C.; Cao, Z.; Yuan, Y. Research progress of aerodynamic thermal environment test and measurement technology. J. Exp. Fluid Mech. 2019, 33, 1–10. [Google Scholar]
- Xia, L.; Qi, B.; Tian, N.; Cao, Y.; Li, H. Study on Modeling Analysis and Testing Method of Electro-thermal Properties of Quartz Lamp. Infrared Technol. 2015, 37, 877–882. [Google Scholar]
- Pan, B.; Wu, D.; Gao, J. High-temperature strain measurement using active imaging digital image correlation and infrared radiation heating. J. Strain Anal. Eng. Des. 2014, 49, 224–232. [Google Scholar] [CrossRef]
- Xia, L.; Qi, B.; Zhang, X.; Zou, Y. The Thermal-environment Analysis of Flat Quartz Lamp Heater System for Thermal Protection & Insulation Test. Infrared Technol. 2016, 38, 617–621. [Google Scholar]
- Wu, D.; Gao, Z.; Wang, Y. Experimental Study on Fuzzy Control of Transient Aerodynamic Heat Flow of Missile. J. Beijing Univ. Aeronaut. Astronaut. 2002, 28, 682–684. [Google Scholar]
- Dong, G.; Lin, H.; Zhao, Z. Design of Aerodynamic Heating Environment Simulation System Based on PLC. Comput. Meas. Control 2014, 22, 261–263+305. [Google Scholar]
- Lan, T.; Lin, H.; Zhang, K. Fractional Order Iterative Learning Control Strategy for Quartz Lamp Radiation Aerodynamic Heating Experiment. J. Northwestern Polytech. Univ. 2017, 35, 26–31. [Google Scholar]
- Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef]
- Abbaker, A.M.O.; Wang, H.; Tian, Y. Robust Model-Free Adaptive Interval Type-2 Fuzzy Sliding Mode Control for PEMFC System Using Disturbance Observer. Int. J. Fuzzy Syst. 2020, 22, 2188–2203. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Tian, Y.; Peyrodie, L.; Wang, X. Model-free based neural network control with time-delay estimation for lower extremity exoskeleton. Neurocomputing 2018, 272, 178–188. [Google Scholar] [CrossRef]
- Chen, C.; Cui, M.; Li, F.; Yin, S.; Wang, X. Model-Free Emergency Frequency Control Based on Reinforcement Learning. IEEE Trans. Ind. Inform. 2021, 17, 2336–2346. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Li, X.; Ren, C.; Ma, S.; Zhu, X. Compensated model-free adaptive tracking control scheme for autonomous underwater vehicles via extended state observer. Ocean. Eng. 2020, 217, 107976. [Google Scholar] [CrossRef]
- Saleki, A.; Fateh, M.M. Model-free control of electrically driven robot manipulators using an extended state observer. Comput. Electr. Eng. 2020, 87, 106768. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, D.; Jiang, B. Model Free Command Filtered Backstepping Control for Marine Power Systems. Math. Probl. Eng. 2015, 2015, 619430. [Google Scholar] [CrossRef]
- Asadi, D.; Bagherzadeh, S.A. Nonlinear adaptive sliding mode tracking control of an airplane with wing damage. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2018, 232, 1405–1420. [Google Scholar] [CrossRef]
- Hou, H.; Yu, X.; Xu, L.; Rsetam, K.; Cao, Z. Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems. IEEE Trans. Ind. Electron. 2020, 67, 5647–5656. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Ozgoli, S.; Ramezani, A. Model-free high-order terminal sliding mode controller for Lipschitz nonlinear systems. Implemented on Exoped (R) exoskeleton robot. Int. J. Syst. Sci. 2021, 52, 1061–1073. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y. Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton. Adv. Eng. Softw. 2018, 119, 38–47. [Google Scholar] [CrossRef]
- Yang, H.; Guo, M.; Xia, Y.; Sun, Z. Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control. Int. J. Robust Nonlinear Control 2020, 30, 80–99. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Tian, Y.; Aitouch, A.; Klein, J. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control. ISA Trans. 2016, 64, 431–439. [Google Scholar] [CrossRef] [PubMed]
SSE | R-Square | Adjusted R-Square | RMSE | |
---|---|---|---|---|
wall 0 | 3927 | 0.9985 | 0.9982 | 12.79 |
wall 1_7.75 m | 6282 | 0.9964 | 0.9954 | 16.53 |
wall 1_8.5 m | 2441 | 0.9953 | 0.9942 | 10.53 |
wall 1_9.1 m | 4606 | 0.9925 | 0.9905 | 14.47 |
wall 2_7.75 m | 3443 | 0.9977 | 0.9971 | 11.98 |
wall 2_8.5 m | 1404 | 0.9969 | 0.9958 | 7.989 |
wall 2_9.1 m | 1231 | 0.9976 | 0.9966 | 7.659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Zhang, G.; Lv, X. A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating. Mathematics 2025, 13, 380. https://doi.org/10.3390/math13030380
Lu C, Zhang G, Lv X. A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating. Mathematics. 2025; 13(3):380. https://doi.org/10.3390/math13030380
Chicago/Turabian StyleLu, Chao, Guangming Zhang, and Xiaodong Lv. 2025. "A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating" Mathematics 13, no. 3: 380. https://doi.org/10.3390/math13030380
APA StyleLu, C., Zhang, G., & Lv, X. (2025). A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating. Mathematics, 13(3), 380. https://doi.org/10.3390/math13030380