A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. CEEMDAN
3.2. Lempel–Ziv Algorithm
- If already exists, the complexity is not increased and the process continues with the next character.
- If does not exist, the complexity is increased by 1 (), , and then the process continues with the next character. This process continues until the last character in the sequence.
3.3. Dispersion Entropy (DispEn)
3.4. GARCH
3.5. GRU
3.6. GWO
4. The Proposed Framework
4.1. Stage 1: Original Series Decomposition and Frequency Identification
4.2. Stage 2: Different-Frequency Subsequence Forecasting
4.3. Stage 3: Nonlinear Integration of Subsequences
4.4. Evaluation and Statistical Tests
5. Empirical Research
5.1. Data Description and Normalization
5.2. Carbon Price Sequence Decomposition and Complexity Identification
5.3. One-Step-Ahead Forecasting
5.3.1. Model Selection and Hyperparameter Setting
5.3.2. Forecasting Results and Evaluation
5.3.3. Comparison of Single Models and Decomposition-Integration Frameworks
5.3.4. Comparison of Single and Hybrid Methods in Decomposition-Integration Frameworks
5.3.5. Model and Method Selections in Decomposition-Integration Frameworks
5.4. Multi-Step-Ahead Forecasting
5.5. Robustness Test
5.5.1. Robustness Test of Hyperparameters
5.5.2. Robustness Test of the Sample Ratio
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Data Description
CEEX Guangzhou | Sample | Size | Date Range | ||
---|---|---|---|---|---|
Data | Total sample | 1969 | 2013.12.09∼2023.03.03 | ||
Training sample | 1772 | 2013.12.09∼2022.05.19 | |||
Test sample | 197 | 2022.05.20∼2023.03.03 | |||
Description | Mean | Median | Std. | Kurtosis | Skewness |
32.201 | 25.62 | 21.987 | −0.051 | 1.145 | |
S-W test | W-statistic | p-value | |||
0.804 | <0.001 | ||||
ADF test | T-statistic | p-value | 1% | 5% | 10% |
−0.131 | 0.946 | −3.434 | −2.863 | −2.568 |
Appendix B. Hyperparameter Settings
Model | Subsequence | p | q | |
---|---|---|---|---|
GARCH | IMF1 | 2 | 2 | |
IMF2 | 2 | 1 | ||
IMF3 | 2 | 1 | ||
IMF4 | 1 | 1 | ||
IMF5 | 2 | 2 | ||
Subsequence | Learning rate | Batch size | Epochs | |
GRU | IMF6 | 0.008 | 116 | 161 |
IMF7 | 0.006 | 124 | 146 | |
IMF8 | 0.006 | 96 | 265 | |
IMF9 | 0.012 | 78 | 235 | |
IMF10 | 0.005 | 126 | 366 | |
Method | Learning rate | Batch size | Epochs | |
Nonlinear | 0.006 | 64 | 188 | |
integration |
Appendix C. Computation Time for Each Framework
Models | RMSE | MAE | MAPE | Total Computing Time |
---|---|---|---|---|
Framework P | 0.2493 | 0.1895 | 0.0024 | 2100 s |
CEEMDAN-GARCH∖GRU-GRU | 0.3865 | 0.3026 | 0.0039 | 1140 s |
CEEMDAN-GWO-ELMAN∖GRU-GRU | 0.3997 | 0.3220 | 0.0042 | 2400 s |
CEEMDAN-GWO-GARCH∖LSTM-GRU | 0.4178 | 0.3423 | 0.0044 | 2220 s |
CEEMDAN-ELMAN∖GRU-GRU | 0.4564 | 0.3582 | 0.0046 | 1230 s |
CEEMDAN-GARCH∖GRU | 0.4978 | 0.3726 | 0.0048 | 960 s |
CEEMDAN-GARCH∖LSTM-GRU | 0.5062 | 0.3780 | 0.0049 | 1200 s |
CEEMDAN-GWO-ELMAN∖LSTM-GRU | 0.5313 | 0.3968 | 0.0051 | 2100 s |
CEEMDAN-ELMAN∖GRU | 0.5335 | 0.4086 | 0.0053 | 1020 s |
VMD-GARCH∖LSTM-LSTM | 0.5644 | 0.4366 | 0.0056 | 1370 s |
CEEMDAN-ELMAN∖LSTM-GRU | 0.5749 | 0.4274 | 0.0055 | 1260 s |
CEEMDAN-GARCH∖LSTM | 0.6794 | 0.5461 | 0.0071 | 970 s |
CEEMDAN-ELMAN∖LSTM | 0.6904 | 0.5565 | 0.0072 | 1080 s |
Appendix D. Supplementary Experiment
References
- Kim, E.; Ahn, Y.; Ryu, D. Application of the carbon emission pricing model in the Korean market. Energy Environ. 2014, 25, 63–78. [Google Scholar] [CrossRef]
- Chiu, F.P.; Kuo, H.I.; Chen, C.C.; Hsu, C.S. The energy price equivalence of carbon taxes and emissions trading-theory and evidence. Appl. Energy 2015, 160, 164–171. [Google Scholar] [CrossRef]
- Leroutier, M. Carbon pricing and power sector decarbonization: Evidence from the UK. J. Environ. Econ. Manag. 2022, 111, 102580. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, Q.; Tan, B.; Yu, Y. Forecasting energy prices using a novel hybrid model with variational mode decomposition. Energy 2022, 246, 123366. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Hao, Y.; Tan, Z. A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting. J. Clean. Prod. 2018, 204, 958–964. [Google Scholar] [CrossRef]
- Karapinar, B.; Dudu, H.; Geyik, O.; Yakut, A.M. How to reach an elusive INDC target: Macro-economic implications of carbon taxation and emissions trading in Turkey. Clim. Policy 2019, 19, 1157–1172. [Google Scholar] [CrossRef]
- Deng, M.Z.; Zhang, W.X. Recognition and analysis of potential risks in China’s carbon emission trading markets. Adv. Clim. Change Res. 2019, 10, 30–46. [Google Scholar] [CrossRef]
- Cogoljević, D.; Alizamir, M.; Piljan, I.; Piljan, T.; Prljixcx, K.; Zimonjixcx, S. A machine learning approach for predicting the relationship between energy resources and economic development. Phys. A Stat. Mech. Its Appl. 2018, 495, 211–214. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. What are the main factors affecting carbon price in Emission Trading Scheme? A case study in China. Sci. Total Environ. 2019, 654, 525–534. [Google Scholar] [CrossRef]
- Lu, H.; Gao, Q.; Li, M.C. Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Evidence from China. Appl. Econ. 2022, 55, 6427–6443. [Google Scholar] [CrossRef]
- Tang, B.J.; Gong, P.Q.; Shen, C. Factors of carbon price volatility in a comparative analysis of the EUA and sCER. Ann. Oper. Res. 2017, 255, 157–168. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, Z.; Liu, Y.; Yu, Z. Factors affecting carbon emission trading price: Evidence from China. Emerg. Mark. Financ. Trade 2019, 55, 3433–3451. [Google Scholar] [CrossRef]
- Yu, H.; Wang, H.; Liang, C.; Liu, Z.; Wang, S. Carbon market volatility analysis based on structural breaks: Evidence from EU-ETS and China. Front. Environ. Sci. 2022, 10, 973855. [Google Scholar] [CrossRef]
- E, J.; Ye, J.; He, L.; Jin, H. Energy price prediction based on independent component analysis and gated recurrent unit neural network. Energy 2019, 189, 116278. [Google Scholar] [CrossRef]
- Tian, C.; Hao, Y. Point and interval forecasting for carbon price based on an improved analysis-forecast system. Appl. Math. Model. 2020, 79, 126–144. [Google Scholar] [CrossRef]
- Atsalakis, G.S. Using computational intelligence to forecast carbon prices. Appl. Soft Comput. 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Niu, M.; Wang, Y.; Sun, S.; Li, Y. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting. Atmos. Environ. 2016, 134, 168–180. [Google Scholar] [CrossRef]
- Zhu, B.; Ye, S.; Han, D.; Wang, P.; He, K.; Wei, Y.M.; Xie, R. A multiscale analysis for carbon price drivers. Energy Econ. 2019, 78, 202–216. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, Z.; Zhang, Z. Carbon price prediction for China’s ETS pilots using variational mode decomposition and optimized extreme learning machine. Ann. Oper. Res. 2021, 1–22. [Google Scholar] [CrossRef]
- Qi, S.; Cheng, S.; Tan, X.; Feng, S.; Zhou, Q. Predicting China’s carbon price based on a multi-scale integrated model. Appl. Energy 2022, 324, 119784. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 134–144. [Google Scholar] [CrossRef]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the Equality of Prediction Mean Squared Errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Han, M.; Ding, L.; Zhao, X.; Kang, W. Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors. Energy 2019, 171, 69–76. [Google Scholar] [CrossRef]
- Alberola, E.; Chevallier, J.; Chèze, B. Price drivers and structural breaks in European carbon prices 2005–2007. Energy Policy 2008, 36, 787–797. [Google Scholar] [CrossRef]
- Chevallier, J. A model of carbon price interactions with macroeconomic and energy dynamics. Energy Econ. 2011, 33, 1295–1312. [Google Scholar] [CrossRef]
- Carnero, M.A.; Olmo, J.; Pascual, L. Modelling the Dynamics of Fuel and EU Allowance Prices during Phase 3 of the EU ETS. Energies 2018, 11, 3148. [Google Scholar] [CrossRef]
- Zhao, X.; Han, M.; Ding, L.; Kang, W. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. Appl. Energy 2018, 216, 132–141. [Google Scholar] [CrossRef]
- Adekoya, O.B. Predicting carbon allowance prices with energy prices: A new approach. J. Clean. Prod. 2021, 282, 124519. [Google Scholar] [CrossRef]
- Zhu, B.; Han, D.; Wang, P.; Wu, Z.; Zhang, T.; Wei, Y.M. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. Appl. Energy 2017, 191, 521–530. [Google Scholar] [CrossRef]
- Sheng, C.; Wang, G.; Geng, Y.; Chen, L. The correlation analysis of futures pricing mechanism in China’s carbon financial market. Sustainability 2020, 12, 7317. [Google Scholar] [CrossRef]
- Wang, J.; Gu, F.; Liu, Y.; Fan, Y.; Guo, J. Bidirectional interactions between trading behaviors and carbon prices in European Union emission trading scheme. J. Clean. Prod. 2019, 224, 435–443. [Google Scholar] [CrossRef]
- Byun, S.J.; Cho, H. Forecasting carbon futures volatility using GARCH models with energy volatilities. Energy Econ. 2013, 40, 207–221. [Google Scholar] [CrossRef]
- Du, Y.; Chen, K.; Chen, S.; Yin, K. Prediction of Carbon Emissions Trading Price in Fujian Province: Based on BP Neural Network Model. Front. Energy Res. 2022, 10, 939602. [Google Scholar] [CrossRef]
- Lei, H. Unveiling the driving patterns of carbon prices through an explainable machine learning framework: Evidence from Chinese emission trading schemes. J. Clean. Prod. 2024, 438, 140697. [Google Scholar] [CrossRef]
- Li, Y.; Song, J. Research on the Application of GA-ELM Model in Carbon Trading Price—An Example of Beijing. Pol. J. Environ. Stud. 2022, 31, 149–161. [Google Scholar] [CrossRef]
- Shi, H.; Wei, A.; Xu, X.; Zhu, Y.; Hu, H.; Tang, S. A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of Shenzhen’s carbon market in China. J. Environ. Manag. 2024, 352, 120131. [Google Scholar] [CrossRef]
- Liu, H.; Shen, L. Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network. Carbon Manag. 2020, 11, 25–37. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, Z. A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting. Environ. Dev. Sustain. 2022, 25, 6225–6247. [Google Scholar] [CrossRef]
- Yang, S.; Chen, D.; Li, S.; Wang, W. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm. Sci. Total Environ. 2020, 716, 137117. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Y.; Wang, S.; Wang, Y. A decomposition–integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development. J. Clean. Prod. 2019, 229, 775–786. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, P.; Chevallier, J.; Wei, Y. Carbon price analysis using empirical mode decomposition. Comput. Econ. 2015, 45, 195–206. [Google Scholar] [CrossRef]
- Zhu, B.; Ye, S.; Wang, P.; He, K.; Zhang, T.; Wei, Y.M. A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting. Energy Econ. 2018, 70, 143–157. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z. Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition. Energy Sci. Eng. 2020, 8, 2708–2721. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X.; Huang, K.; Azimi, M. Carbon trading volume and price forecasting in China using multiple machine learning models. J. Clean. Prod. 2020, 249, 119386. [Google Scholar] [CrossRef]
- Wang, J. Differential learning model for carbon emission allowance prices prediction based on adaptive decomposition and joint feature contribution. J. Clean. Prod. 2024, 467, 142932. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, K.; Lu, Q.; Wu, J.; Yu, L.; Lin, Y. Predicting carbon futures prices based on a new hybrid machine learning: Comparative study of carbon prices in different periods. J. Environ. Manag. 2023, 346, 118962. [Google Scholar] [CrossRef]
- Lan, Y.; Huangfu, Y.; Huang, Z.; Zhang, C. Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration. J. Environ. Manag. 2024, 362, 121253. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Li, G. Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction. J. Clean. Prod. 2023, 401, 136701. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Tung, C.-C.; Yen, N.-C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Huang, Y.; Dai, X.; Wang, Q.; Zhou, D. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Appl. Energy 2021, 285, 116485. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, J.; Wang, J.; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl. Energy 2010, 87, 3606–3610. [Google Scholar] [CrossRef]
- He, R.; Zhang, L.; Chew, A.W.Z. Modeling and predicting rainfall time series using seasonal-trend decomposition and machine learning. Knowl.-Based Syst. 2022, 251, 109125. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Zhu, T.; Gong, Z. Fusion Prediction Model of Atmospheric Pollutant Based on Self-Organized Feature. IEEE Access 2021, 9, 8110–8120. [Google Scholar] [CrossRef]
- Liao, L.; Li, H.; Shang, W.; Ma, L. An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks. ACM Trans. Softw. Eng. Methodol. TOSEM 2022, 31, 1–40. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S.; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl. Soft Comput. 2021, 100, 106996. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. [Google Scholar] [CrossRef]
- Heidari, A.A.; Pahlavani, P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl. Soft Comput. 2017, 60, 115–134. [Google Scholar] [CrossRef]
- Prabu, S.; Thiyaneswaran, B.; Sujatha, M.; Nalini, C.; Rajkumar, S. Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters. Comput. Syst. Sci. Eng. 2022, 43, 737–749. [Google Scholar] [CrossRef]
- Yun, P.; Huang, X.; Wu, Y.; Yang, X. Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN-LSTM. Energy Sci. Eng. 2023, 11, 79–96. [Google Scholar] [CrossRef]
- Li, G.; Ning, Z.; Yang, H.; Gao, L. A new carbon price prediction model. Energy 2022, 239, 122324. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, X.; Yuan, X. Predicting the carbon price sequence in the shenzhen emissions exchange using a multiscale ensemble forecasting model based on ensemble empirical mode decomposition. Energies 2018, 11, 1907. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, Z.; Dong, P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J. Energy Storage 2019, 21, 510–518. [Google Scholar] [CrossRef]
Models | RMSE | Rank | MAE | Rank | MAPE | Rank |
---|---|---|---|---|---|---|
Framework P | 0.2493 | 1 | 0.1895 | 1 | 0.0024 | 1 |
CEEMDAN-GARCH/GRU-GRU | 0.3865 | 2 | 0.3026 | 2 | 0.0039 | 2 |
CEEMDAN-GWO-ELMAN/GRU-GRU | 0.3997 | 3 | 0.3220 | 3 | 0.0042 | 3 |
CEEMDAN-GWO-GARCH/LSTM-GRU | 0.4178 | 4 | 0.3423 | 4 | 0.0044 | 4 |
CEEMDAN-ELMAN/GRU-GRU | 0.4564 | 5 | 0.3582 | 5 | 0.0046 | 5 |
CEEMDAN-GARCH/GRU | 0.4978 | 6 | 0.3726 | 6 | 0.0048 | 6 |
CEEMDAN-GARCH/LSTM-GRU | 0.5062 | 7 | 0.3780 | 7 | 0.0049 | 7 |
CEEMDAN-GWO-ELMAN/LSTM-GRU | 0.5313 | 8 | 0.3968 | 8 | 0.0051 | 8 |
CEEMDAN-ELMAN/GRU | 0.5335 | 9 | 0.4086 | 9 | 0.0053 | 9 |
VMD-GARCH/LSTM-LSTM | 0.5644 | 10 | 0.4366 | 11 | 0.0056 | 11 |
CEEMDAN-ELMAN/LSTM-GRU | 0.5749 | 11 | 0.4274 | 10 | 0.0055 | 10 |
CEEMDAN-GARCH/LSTM | 0.6794 | 12 | 0.5461 | 12 | 0.0071 | 12 |
CEEMDAN-ELMAN/LSTM | 0.6904 | 13 | 0.5565 | 13 | 0.0072 | 13 |
GARCH | 0.9856 | 14 | 0.6755 | 14 | 0.0087 | 14 |
LSTM | 0.9957 | 15 | 0.7508 | 15 | 0.0097 | 15 |
CEEMDAN-GWO-GARCH/BiLSTM-GRU | 1.0061 | 16 | 0.8752 | 18 | 0.0113 | 18 |
CEEMDAN-GRU | 1.0092 | 17 | 0.9003 | 20 | 0.0116 | 20 |
CEEMDAN-ELMAN | 1.0147 | 18 | 0.8804 | 19 | 0.0113 | 19 |
CEEMDAN-LSTM | 1.0253 | 19 | 0.9234 | 21 | 0.0120 | 21 |
CEEMDAN-GARCH/BiLSTM-GRU | 1.0895 | 20 | 0.9376 | 22 | 0.0122 | 22 |
SVR | 1.0986 | 21 | 0.7655 | 16 | 0.0099 | 16 |
GRU | 1.1063 | 22 | 0.7869 | 17 | 0.0102 | 17 |
CEEMDAN-GWO-ELMAN/BiLSTM-GRU | 1.1298 | 23 | 0.9461 | 23 | 0.0122 | 23 |
CEEMDAN-SVR | 1.1323 | 24 | 1.0038 | 25 | 0.0130 | 25 |
ELMAN | 1.2350 | 25 | 0.9778 | 24 | 0.0125 | 24 |
CEEMDAN-ELMAN/BiLSTM-GRU | 1.2445 | 26 | 1.0936 | 26 | 0.0142 | 26 |
CEEMDAN-GARCH/BiLSTM | 1.5552 | 27 | 1.3432 | 27 | 0.0175 | 27 |
CEEMDAN-ELMAN/BiLSTM | 1.5787 | 28 | 1.3466 | 28 | 0.0176 | 28 |
CEEMDAN-BILSTM | 1.9799 | 29 | 1.6186 | 29 | 0.0218 | 29 |
BILSTM | 2.8130 | 30 | 2.3724 | 30 | 0.0305 | 30 |
Models | MSE | MAE | MAPE |
---|---|---|---|
CEEMDAN-GWO-ELMAN/GRU-GRU | −6.1771 *** | −7.0221 *** | −7.0538 *** |
CEEMDAN-GWO-GARCH/LSTM-GRU | −7.5423 *** | −11.5173 *** | −11.5183 *** |
CEEMDAN-GWO-ELMAN/LSTM-GRU | −6.5809 *** | −9.1506 *** | −9.1324 *** |
CEEMDAN-GWO-GARCH/BILSTM-GRU | −13.4917 *** | −21.2599 *** | −21.3997 *** |
CEEMDAN-GWO-ELMAN/BILSTM-GRU | −12.0551 *** | −18.0871 *** | −18.1672 *** |
VMD-GARCH/LSTM-LSTM | −6.7997 *** | −9.2261 *** | −9.2359 *** |
CEEMDAN-GARCH/GRU-GRU | −5.1761 *** | −5.7379 *** | −5.7630 *** |
CEEMDAN-ELMAN/GRU-GRU | −7.3982 *** | −8.7560 *** | −8.7531 *** |
CEEMDAN-GARCH/LSTM-GRU | −6.2647 *** | −8.2370 *** | −8.2471 *** |
CEEMDAN-ELMAN/LSTM-GRU | −7.1920 *** | −10.2632 *** | −10.2495 *** |
CEEMDAN-GARCH/BILSTM-GRU | −12.6294 *** | −17.0233 *** | −16.9984 *** |
CEEMDAN-ELMAN/BILSTM-GRU | −14.7298 *** | −19.4080 *** | −19.3736 *** |
CEEMDAN-GARCH/GRU | −6.0847 *** | −7.8530 *** | −7.8559 *** |
CEEMDAN-ELMAN/GRU | −6.6917 *** | −9.1777 *** | −9.2004 *** |
CEEMDAN-GARCH/LSTM | −8.9931 *** | −13.2971 *** | −13.3296 *** |
CEEMDAN-ELMAN/LSTM | −8.9677 *** | −13.6142 *** | −13.6215 *** |
CEEMDAN-GARCH/BILSTM | −14.1627 *** | −19.8066 *** | −19.5371 *** |
CEEMDAN-ELMAN/BILSTM | −13.8912 *** | −19.1060 *** | −18.8426 *** |
CEEMDAN-GRU | −13.5660 *** | −22.6894 *** | −22.7061 *** |
CEEMDAN-LSTM | −14.2671 *** | −20.0551 *** | −20.0200 *** |
CEEMDAN-ELMAN | −12.6400 *** | −18.9933 *** | −19.2058 *** |
CEEMDAN-SVR | −14.2333 *** | −22.6436 *** | −22.6531 *** |
CEEMDAN-BILSTM | −11.7816 *** | −17.3966 *** | −17.0744 *** |
GRU | −6.2386 *** | −12.2136 *** | −12.1221 *** |
LSTM | −6.7956 *** | −13.3869 *** | −13.2468 *** |
ELMAN | −9.4926 *** | −16.0688 *** | −16.1014 *** |
SVR | −5.9837 *** | −11.2275 *** | −11.1336 *** |
GARCH | −5.9129 *** | −10.6305 *** | −10.5727 *** |
BILSTM | −12.9678 *** | −20.3269 *** | −20.5668 *** |
Models | RMSE | MAE | MAPE | MSE | MAE | MAPE |
---|---|---|---|---|---|---|
Framework P | 0.7200 | 0.5195 | 0.0077 | |||
CEEMDAN-GARCH/GRU-GRU | 0.9346 | 0.7879 | 0.0134 | −4.7897 *** | −9.9407 *** | −10.7727 *** |
CEEMDAN-GWO-ELMAN/GRU-GRU | 0.9504 | 0.7358 | 0.0118 | −3.7273 *** | −6.3850 *** | −7.8867 *** |
VMD-GARCH/LSTM-LSTM | 1.0528 | 0.8529 | 0.0132 | −5.1316 *** | −5.5379 *** | −5.5628 *** |
CEEMDAN-ELMAN/GRU-GRU | 1.1651 | 0.9869 | 0.0148 | −7.4339 *** | −13.9543 *** | −14.9470 *** |
GARCH | 1.4256 | 0.8598 | 0.0130 | −4.4203 *** | −7.0562 *** | −7.8696 *** |
CEEMDAN-GWO-GARCH/LSTM-GRU | 1.6283 | 1.3237 | 0.0185 | −14.4173 *** | −17.4572 *** | −17.8334 *** |
CEEMDAN-GWO-ELMAN/LSTM-GRU | 1.7670 | 1.4217 | 0.0195 | −13.1729 *** | −17.4485 *** | −17.3448 *** |
CEEMDAN-GARCH/LSTM-GRU | 1.9300 | 1.6418 | 0.0231 | −17.1490 *** | −22.2719 *** | −23.6570 *** |
GRU | 1.9390 | 1.4422 | 0.0205 | −7.1105 *** | −16.0831 *** | −16.9759 *** |
CEEMDAN-GARCH/GRU | 1.9473 | 1.7061 | 0.0238 | −18.3099 *** | −26.0535 *** | −27.5366 *** |
CEEMDAN-ELMAN/GRU | 1.9864 | 1.7045 | 0.0237 | −19.2076 *** | −26.4907 *** | −28.2950 *** |
CEEMDAN-ELMAN/LSTM-GRU | 1.9908 | 1.6543 | 0.0231 | −15.8921 *** | −20.1434 *** | −20.9796 *** |
CEEMDAN-GRU | 2.0528 | 1.7982 | 0.0252 | −17.6675 *** | −26.6100 *** | −28.5906 *** |
SVR | 2.5305 | 2.0495 | 0.0282 | −9.9736 *** | −22.2362 *** | −23.9457 *** |
CEEMDAN-GARCH/LSTM | 2.8715 | 2.4311 | 0.0327 | −21.3015 *** | −25.4924 *** | −25.8639 *** |
CEEMDAN-ELMAN/LSTM | 2.9090 | 2.4694 | 0.0333 | −21.5075 *** | −25.7659 *** | −26.3088 *** |
CEEMDAN-LSTM | 2.9189 | 2.4706 | 0.0334 | −21.3924 *** | −25.3399 *** | −26.0190 *** |
CEEMDAN-ELMAN | 3.1121 | 2.6654 | 0.0366 | −20.1226 *** | −27.6298 *** | −29.3190 *** |
LSTM | 3.2580 | 2.6762 | 0.0365 | −12.9878 *** | −24.1499 *** | −26.2976 *** |
CEEMDAN-SVR | 3.2695 | 2.7476 | 0.0373 | −19.7956 *** | −25.7724 *** | −26.9241 *** |
ELMAN | 3.3062 | 2.6721 | 0.0366 | −10.4115 *** | −23.7687 *** | −25.5273 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Nie, B.; Lan, Y.; Zhang, C. A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods. Mathematics 2025, 13, 464. https://doi.org/10.3390/math13030464
Huang Z, Nie B, Lan Y, Zhang C. A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods. Mathematics. 2025; 13(3):464. https://doi.org/10.3390/math13030464
Chicago/Turabian StyleHuang, Zhehao, Benhuan Nie, Yuqiao Lan, and Changhong Zhang. 2025. "A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods" Mathematics 13, no. 3: 464. https://doi.org/10.3390/math13030464
APA StyleHuang, Z., Nie, B., Lan, Y., & Zhang, C. (2025). A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods. Mathematics, 13(3), 464. https://doi.org/10.3390/math13030464