Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect
Abstract
:1. Introduction
2. Literature Review
2.1. Assembly Scheduling Problems
2.2. Flexible Job Shop Scheduling Problems with Multiple Constraints
2.3. Multi-Objective Optimization Algorithm
3. Problem Description and Mathematical Model
3.1. Problem Description
3.2. Assumptions and Notations
- (1)
- Each machine can only process one operation at a time, and each sub-part can be processed only by one of its candidate machines.
- (2)
- The processing time and assembly time are certain; specify the requirements for the final product in advance.
- (3)
- The processing and assembly stages are independent of each other. Assembly operation is possible only after all the operations in the same group have been processed.
- (4)
- At any time, each worker can operate only one machine chosen from the corresponding machine set.
- (5)
- All machines remain continuously available. Interruptions are not considered for each operation.
- (6)
- Different operations have different setup times, and if the processes of a job are continuously processed on the same machine, the setup time is 0.
- (7)
- When the same job is carried out on different machines, the transportation time varies with the machine used. If two operations of a job are processed on the same machine, the transportation time is 0.
3.3. Multi-Objective Mathematical Model
3.4. Properties of FAJSPLE
4. Algorithm Descriptions
4.1. Framework of Proposed HMABC
4.2. Chromosome Encoding and Decoding
4.3. Initial Population
4.4. Offspring Reproduction
4.4.1. Crossover and Mutation
4.4.2. Local Search
- (1)
- Generate solutions better than the current search strategy. This strategy has a higher probability of finding better solutions and includes two neighborhood structures, NS1 and NS2, but it may also lead the algorithm to fall into local optimal.
- (2)
- Random jump-out strategy. This strategy is similar to mutation operation, and executing it with a small probability can help the algorithm escape from local optima. It includes two neighborhood structures, NS3 and NS4.
5. Numerical Experiments and Results
5.1. Experimental Parameters
5.2. Effectiveness of Each Improvement of the HMABC
5.3. Comparative Analysis with Other Algorithms
5.4. Experimental Analysis
6. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Guo, X.; Tang, H.; Wu, R.; Wang, L.; Pang, S.; Liu, Z.; Xu, W.; Li, X. Survey of integrated flexible job shop scheduling problems. Comput. Ind. Eng. 2022, 174, 108786. [Google Scholar] [CrossRef]
- Hansmann, R.-S.; Rieger, T.; Zimmermann, U.-T. Flexible job shop scheduling with blockages. Math. Methods Oper. Res. 2014, 79, 135–161. [Google Scholar] [CrossRef]
- Kress, D.; Müller, D.; Nossack, J. A worker constrained flexible job shop scheduling problem with sequence-dependent setup times. OR Spectr. 2019, 41, 179–217. [Google Scholar] [CrossRef]
- Homayouni, S.M.; Fontes, D.B. Production and transport scheduling in flexible job shop manufacturing systems. J. Glob. Optim. 2021, 79, 463–502. [Google Scholar] [CrossRef]
- Fattahi, P.; Mehrabad, M.S.; Jolai, F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J. Intell. Manuf. 2007, 18, 331–342. [Google Scholar] [CrossRef]
- Wang, J.-F.; Du, B.-Q.; Ding, H.-M. A genetic algorithm for the flexible job-shop scheduling problem. In Proceedings of the Advanced Research on Computer Science and Information Engineering: International Conference, CSIE 2011, Zhengzhou, China, 21–22 May 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 332–339. [Google Scholar]
- Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Eng. 2005, 48, 409–425. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zhang, B.; Wang, S. Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system. Eur. J. Oper. Res. 2020, 283, 441–460. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wang, D.-J.; Cheng, S.-R.; Chung, I.-H.; Lin, W.-C. A two-stage three-machine assembly scheduling problem with a position-based learning effect. Int. J. Prod. Res. 2018, 56, 3064–3079. [Google Scholar] [CrossRef]
- Kazemi, H.; Mazdeh, M.M.; Rostami, M. The two stage assembly flow-shop scheduling problem with batching and delivery. Eng. Appl. Artif. Intell. 2017, 63, 98–107. [Google Scholar] [CrossRef]
- Mozdgir, A.; Ghomi, S.F.; Jolai, F.; Navaei, J. Two-stage assembly flow-shop scheduling problem with non-identical assembly machines considering setup times. Int. J. Prod. Res. 2013, 51, 3625–3642. [Google Scholar] [CrossRef]
- Navaei, J.; Ghomi, S.; Jolai, F.; Shiraqai, M.; Hidaji, H. Two-stage flow-shop scheduling problem with non-identical second stage assembly machines. Int. J. Adv. Manuf. Technol. 2013, 69, 2215–2226. [Google Scholar] [CrossRef]
- Fattahi, P.; Hosseini, S.M.H.; Jolai, F. A mathematical model and extension algorithm for assembly flexible flow shop scheduling problem. Int. J. Adv. Manuf. Technol. 2013, 65, 787–802. [Google Scholar] [CrossRef]
- Liao, C.-J.; Lee, C.-H.; Lee, H.-C. An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to minimize makespan. Comput. Ind. Eng. 2015, 88, 317–325. [Google Scholar] [CrossRef]
- Chan, F.; Wong, T.; Chan, L. Lot streaming for product assembly in job shop environment. Robot. Comput. -Integr. Manuf. 2008, 24, 321–331. [Google Scholar] [CrossRef]
- Wong, T.-C.; Chan, F.-T.; Chan, L. A resource-constrained assembly job shop scheduling problem with lot streaming technique. Comput. Ind. Eng. 2009, 57, 983–995. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S. Flexible assembly job-shop scheduling with sequence-dependent setup times and part sharing in a dynamic environment: Constraint programming model, mixed-integer programming model, and dispatching rules. IEEE Trans. Eng. Manag. 2018, 65, 487–504. [Google Scholar] [CrossRef]
- Hurink, J.; Knust, S. Tabu search algorithms for job-shop problems with a single transport robot. Eur. J. Oper. Res. 2005, 162, 99–111. [Google Scholar] [CrossRef]
- Zhang, Q.; Manier, H.; Manier, M.-A. A modified shifting bottleneck heuristic and disjunctive graph for job shop scheduling problems with transportation constraints. Int. J. Prod. Res. 2014, 52, 985–1002. [Google Scholar] [CrossRef]
- Rossi, A.; Dini, G. Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robot. Comput. -Integr. Manuf. 2007, 23, 503–516. [Google Scholar] [CrossRef]
- Zhang, Q.; Manier, H.; Manier, M.-A. A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times. Comput. Oper. Res. 2012, 39, 1713–1723. [Google Scholar] [CrossRef]
- Rossi, A. Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships. Int. J. Prod. Econ. 2014, 153, 253–267. [Google Scholar] [CrossRef]
- Karimi, S.; Ardalan, Z.; Naderi, B.; Mohammadi, M. Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Appl. Math. Model. 2017, 41, 667–682. [Google Scholar] [CrossRef]
- Qi, R.; Li, J.-Q.; Wang, J.; Jin, H.; Han, Y.-Y. QMOEA: A Q-learning-based multiobjective evolutionary algorithm for solving time-dependent green vehicle routing problems with time windows. Inf. Sci. 2022, 608, 178–201. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Y.; Sun, J.; Zhang, W. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 2020, 54, 100664. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, S.; Wang, L. Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. J. Clean. Prod. 2019, 211, 765–786. [Google Scholar] [CrossRef]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robot. Comput. Integr. Manuf. 2019, 59, 143–157. [Google Scholar] [CrossRef]
- Azzouz, A.; Ennigrou, M.; Said, L.B. A hybrid algorithm for flexible job-shop scheduling problem with setup times. Int. J. Prod. Manag. Eng. 2017, 5, 23–30. [Google Scholar] [CrossRef]
- Mousakhani, M. Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. Int. J. Prod. Res. 2013, 51, 3476–3487. [Google Scholar] [CrossRef]
- Li, J.-Q.; Deng, J.-W.; Li, C.-Y.; Han, Y.-Y.; Tian, J.; Zhang, B.; Wang, C.-G. An improved Jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times. Knowl. Based Syst. 2020, 200, 106032. [Google Scholar] [CrossRef]
- Saidi-Mehrabad, M.; Fattahi, P. Flexible job shop scheduling with tabu search algorithms. Int. J. Adv. Manuf. Technol. 2007, 32, 563–570. [Google Scholar] [CrossRef]
- Du, Y.; Li, J.-Q.; Chen, X.-L.; Duan, P.-Y.; Pan, Q.-K. Knowledge-Based Reinforcement Learning and Estimation of Distribution Algorithm for Flexible Job Shop Scheduling Problem. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 7, 1036–1050. [Google Scholar] [CrossRef]
- Du, Y.; Li, J.; Li, C.; Duan, P. A reinforcement learning approach for flexible job shop scheduling problem with crane transportation and setup times. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 5695–5709. [Google Scholar] [CrossRef]
- Li, Z.; Qian, B.; Hu, R.; Chang, L.; Yang, J. An elitist nondominated sorting hybrid algorithm for multi-objective flexible job-shop scheduling problem with sequence-dependent setups. Knowl. Based Syst. 2019, 173, 83–112. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Lu, J.; Zhang, W. A hybrid many-objective evolutionary algorithm for flexible job-shop scheduling problem with transportation and setup times. Comput. Oper. Res. 2021, 132, 105263. [Google Scholar] [CrossRef]
- Zou, W.; Chen, Y.Z.; Zhang, B. Solving multiobjective optimization problems using artificial bee colony algorithm. Discret. Dyn. H. Nat. Soc. 2011, 2011, 569784. [Google Scholar] [CrossRef]
- Hedayatzadeh, R.; Hasanizadeh, B.; Akbari, R.; Ziarati, K. A multi-objective artificial bee colony for optimizing multi-objective problems. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; IEEE: New York, NY, USA, 2010; pp. V5-277–V5-281. [Google Scholar]
- Kishor, A.; Singh, P.K.; Prakash, J. NSABC: Non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clustering. Neurocomputing 2016, 216, 514–533. [Google Scholar] [CrossRef]
- Akay, B. Synchronous and asynchronous pareto-based multi-objective artificial bee colony algorithms. J. Glob. Optim. 2013, 57, 415–445. [Google Scholar] [CrossRef]
- Toktas, A.; Ustun, D.; Erdogan, N. Pioneer Pareto artificial bee colony algorithm for three-dimensional objective space optimization of composite-based layered radar absorber. Appl. Soft Comput. 2020, 96, 106696. [Google Scholar] [CrossRef]
- Li, J.-Q.; Wang, J.-D.; Pan, Q.-K.; Duan, P.-Y.; Sang, H.-Y.; Gao, K.-Z.; Xue, Y. A hybrid artificial bee colony for optimizing a reverse logistics network system. Soft Comput. 2017, 21, 6001–6018. [Google Scholar] [CrossRef]
- Gao, W.-F.; Liu, S.-Y.; Huang, L.-L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 2013, 43, 1011–1024. [Google Scholar] [PubMed]
- Shan, J.; Lu, R. Multi-objective economic optimization scheduling of CCHP micro-grid based on improved bee colony algorithm considering the selection of hybrid energy storage system. Energy Rep. 2021, 7, 326–341. [Google Scholar] [CrossRef]
- Chen, H.; Bo, M.L.; Zhu, Y. Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission. Int. J. Electr. Power Energy Syst. 2014, 60, 203–220. [Google Scholar] [CrossRef]
- Li, J.-Q.; Han, Y.-Q. A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Clust. Comput. 2020, 23, 2483–2499. [Google Scholar] [CrossRef]
- Alrezaamiri, H.; Ebrahimnejad, A.; Motameni, H. Parallel multi-objective artificial bee colony algorithm for software requirement optimization. Requir. Eng. 2020, 25, 363–380. [Google Scholar] [CrossRef]
- Baradaran, V.; Shafaei, A.; Hosseinian, A.H. Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach. Comput. Ind. Eng. 2019, 131, 187–199. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Wu, R.; Guo, K. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem. Appl. Soft Comput. 2020, 95, 106544. [Google Scholar] [CrossRef]
- Xie, J.; Gao, L.; Pan, Q.-K.; Tasgetiren, M.F. An effective multi-objective artificial bee colony algorithm for energy efficient distributed job shop scheduling. Procedia Manuf. 2019, 39, 1194–1203. [Google Scholar] [CrossRef]
- Xu, X.; Hao, J.; Zheng, Y. Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network. Comput. Ind. Eng. 2020, 142, 106338. [Google Scholar] [CrossRef]
- Azzouz, A.; Ennigrou, M.; Said, L.B. A self-adaptive evolutionary algorithm for solving flexible job-shop problem with sequence dependent setup time and learning effects. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; IEEE: New York, NY, USA, 2017; pp. 1827–1834. [Google Scholar]
- Li, Y.; Li, X.; Gao, L.; Fu, L.; Wang, C. An efficient critical path based method for permutation flow shop scheduling problem. J. Manuf. Syst. 2022, 63, 344–353. [Google Scholar] [CrossRef]
- Burmeister, S.-C.; Guericke, D.; Schryen, G. A memetic NSGA-II for the multi-objective flexible job shop scheduling problem with real-time energy tariffs. Flex. Serv. Manuf. J. 2023, 36, 1–41. [Google Scholar]
Indices: | Descriptions: |
---|---|
i | Machines index, . |
s,p | Products index, . |
j, h | Jobs index, . |
w | Workers index |
Parameters: | |
n | Total number of jobs. |
m | Total number of machines. |
pr | Total number of the products. |
wn | Total number of the workers. |
Proficiency of worker w on machine i. | |
Total number of the operations of job j. | |
lth operation of job j. | |
Standard processing time of on machine i. | |
Actual processing time of on machine i. | |
Cost of on machine i with worker w. | |
Setup time between job j and job h on machine i. | |
Setup time between product p and product s. | |
Transportation time of job j from machine k to machine i. | |
Ap | Assembly time of product p. |
Unit energy consumption of on machine i. | |
Assembly energy consumption of product p. | |
Total energy consumption of job j. | |
Completion time of in the first stage. | |
Start assembly time of product p. | |
Completion time of product p. | |
TEC | Total energy consumption. |
Maximum assembly completion time. | |
TC | Total cost |
M | A large positive number. |
Decision variables: | |
1 if is processed after and 0 otherwise. . | |
1 if is processed on machine i and on machine k. | |
1 if is processed on machine i with worker w. | |
1 if job j is a sub-part of product p. | |
1 if product s to be assembled just before each product p. |
Parameters | Values |
---|---|
Population size (PS) | 200 |
Limited iteration number (Ln) | 5 |
Probability of mutation operator (PMO) | 0.5 |
LimitForScout | 3 |
Experiment Number | Parameters | Avg_IGD | |
---|---|---|---|
PS | Ln | ||
1 | 50 | 5 | 257.893 |
2 | 50 | 10 | 272.127 |
3 | 50 | 15 | 256.877 |
4 | 50 | 20 | 201.632 |
6 | 100 | 10 | 221.75 |
7 | 100 | 15 | 219.505 |
8 | 100 | 20 | 246.454 |
9 | 150 | 5 | 210.531 |
10 | 150 | 10 | 252.647 |
11 | 150 | 15 | 240.202 |
12 | 150 | 20 | 255.994 |
13 | 200 | 5 | 212.966 |
14 | 200 | 10 | 197.816 |
15 | 200 | 15 | 244.403 |
16 | 200 | 20 | 234.862 |
17 | 300 | 5 | 216.865 |
18 | 300 | 10 | 235.11 |
19 | 300 | 15 | 233.175 |
20 | 300 | 20 | 242.503 |
Parameters | Values | Avg_IGD |
---|---|---|
PS | 50 | 224.5600 |
100 | 240.4523 | |
150 | 225.6937 | |
200 | 222.5118 | |
300 | 231.9133 | |
Ln | 5 | 234.2530 |
10 | 235.8900 | |
15 | 238.8324 | |
20 | 236.2890 |
Instance | GD | IGD | RPI | ||||||
---|---|---|---|---|---|---|---|---|---|
HMABC | ABC_original | HMABC | ABC_original | HMABC(GD) | ABC_original(GD) | HMABC(IGD) | ABC_original(IGD) | ||
1 | 10_5_3 | 2.293 | 12.155 | 141.749 | 149.529 | 0.000 | 7.036 | 0.000 | 1.234 |
2 | 10_5_5 | 3.039 | 16.756 | 221.260 | 177.896 | 0.000 | 5.712 | 0.435 | 0.000 |
3 | 10_5_7 | 3.288 | 20.513 | 204.594 | 335.259 | 0.000 | 4.086 | 0.000 | 0.488 |
4 | 10_7_3 | 3.315 | 26.641 | 140.763 | 314.451 | 0.000 | 4.362 | 0.000 | 0.938 |
5 | 10_7_5 | 3.224 | 21.642 | 211.624 | 303.665 | 0.000 | 4.798 | 0.000 | 0.268 |
6 | 10_7_7 | 4.362 | 22.186 | 245.825 | 365.748 | 0.000 | 4.087 | 0.000 | 0.506 |
7 | 20_5_3 | 4.627 | 24.809 | 254.671 | 493.636 | 0.000 | 6.089 | 0.000 | 0.657 |
8 | 20_5_5 | 4.406 | 25.545 | 242.600 | 307.695 | 0.000 | 5.130 | 0.000 | 0.023 |
9 | 20_5_7 | 4.197 | 21.348 | 173.637 | 261.555 | 0.000 | 5.968 | 0.000 | 0.175 |
10 | 20_7_3 | 3.363 | 23.839 | 199.333 | 330.374 | 0.000 | 5.012 | 0.000 | 0.219 |
11 | 20_7_5 | 3.524 | 21.601 | 218.485 | 223.567 | 0.000 | 2.643 | 0.000 | 0.140 |
12 | 20_7_7 | 3.743 | 26.079 | 339.711 | 399.059 | 0.000 | 5.835 | 0.000 | 1.156 |
13 | 30_5_3 | 5.754 | 34.594 | 589.309 | 483.425 | 0.000 | 3.968 | 0.551 | 0.000 |
14 | 30_5_5 | 5.248 | 19.120 | 387.378 | 441.608 | 0.000 | 5.127 | 0.000 | 0.292 |
15 | 30_5_7 | 4.078 | 27.874 | 321.487 | 693.079 | 0.000 | 5.951 | 0.000 | 0.272 |
16 | 30_7_3 | 8.625 | 42.852 | 524.120 | 812.755 | 0.000 | 4.631 | 0.000 | 0.200 |
17 | 30_7_5 | 6.790 | 41.598 | 561.952 | 726.280 | 0.000 | 5.307 | 0.000 | 0.225 |
18 | 30_7_7 | 6.119 | 42.531 | 635.945 | 809.005 | 0.000 | 6.809 | 0.000 | 0.410 |
19 | 50_5_3 | 9.050 | 50.956 | 642.789 | 771.257 | 0.000 | 5.064 | 0.000 | 0.894 |
20 | 50_5_5 | 8.395 | 52.945 | 918.886 | 1125.780 | 0.000 | 4.592 | 0.000 | 0.320 |
21 | 50_5_7 | 7.714 | 60.235 | 949.429 | 1338.860 | 0.000 | 6.154 | 0.000 | 0.324 |
22 | 50_7_3 | 9.642 | 58.471 | 725.451 | 1374.210 | 0.000 | 5.974 | 0.000 | 0.105 |
23 | 50_7_5 | 5.931 | 33.167 | 717.617 | 947.390 | 0.000 | 2.695 | 0.000 | 0.171 |
24 | 50_7_7 | 8.947 | 64.009 | 987.974 | 1308.000 | 0.000 | 6.066 | 0.000 | 0.026 |
25 | 100_5_3 | 11.326 | 78.993 | 1256.360 | 1137.180 | 0.000 | 4.720 | 0.255 | 0.000 |
26 | 100_5_5 | 8.755 | 32.349 | 1236.230 | 1055.730 | 0.000 | 4.199 | 0.000 | 0.393 |
27 | 100_5_7 | 10.990 | 77.661 | 1747.130 | 1792.670 | 0.000 | 4.018 | 0.000 | 0.265 |
28 | 100_7_3 | 15.061 | 86.152 | 1638.410 | 3367.560 | 0.000 | 5.736 | 0.000 | 0.084 |
29 | 100_7_5 | 9.608 | 49.953 | 1414.030 | 1970.400 | 0.000 | 5.141 | 0.000 | 0.428 |
30 | 100_7_7 | 10.760 | 53.987 | 1393.450 | 1763.300 | 0.000 | 6.229 | 0.000 | 0.014 |
Instance | GD | IGD | RPI | ||||||
---|---|---|---|---|---|---|---|---|---|
HMABC | ABC_WS | HMABC | ABC_WS | HMABC(GD) | ABC_WS(GD) | HMABC(IGD) | ABC_WS(IGD) | ||
1 | 10_5_3 | 3.32 | 28.07 | 140.76 | 442.33 | 0.000 | 7.466 | 0.000 | 2.142 |
2 | 10_5_5 | 13.60 | 13.51 | 441.21 | 502.06 | 0.007 | 0.000 | 0.000 | 0.138 |
3 | 10_5_7 | 4.36 | 13.60 | 376.33 | 316.66 | 0.000 | 2.118 | 0.188 | 0.000 |
4 | 10_7_3 | 5.32 | 18.30 | 633.73 | 900.57 | 0.000 | 2.440 | 0.000 | 0.421 |
5 | 10_7_5 | 4.41 | 13.45 | 772.89 | 753.14 | 0.000 | 2.052 | 0.026 | 0.000 |
6 | 10_7_7 | 4.20 | 22.60 | 527.81 | 660.15 | 0.000 | 4.385 | 0.000 | 0.251 |
7 | 20_5_3 | 3.36 | 22.70 | 199.33 | 402.30 | 0.000 | 5.750 | 0.000 | 1.018 |
8 | 20_5_5 | 3.52 | 14.40 | 241.67 | 376.72 | 0.000 | 3.086 | 0.000 | 0.559 |
9 | 20_5_7 | 3.74 | 16.43 | 350.70 | 355.06 | 0.000 | 3.390 | 0.000 | 0.012 |
10 | 20_7_3 | 5.75 | 16.57 | 943.87 | 1051.59 | 0.000 | 1.880 | 0.000 | 0.114 |
11 | 20_7_5 | 5.25 | 36.59 | 387.38 | 519.01 | 0.000 | 5.971 | 0.000 | 0.340 |
12 | 20_7_7 | 4.08 | 25.16 | 321.49 | 688.74 | 0.000 | 5.170 | 0.000 | 1.142 |
13 | 30_5_3 | 8.62 | 22.24 | 1257.16 | 1045.34 | 0.000 | 1.579 | 0.203 | 0.000 |
14 | 30_5_5 | 6.79 | 17.52 | 797.36 | 732.68 | 0.000 | 1.581 | 0.088 | 0.000 |
15 | 30_5_7 | 6.12 | 25.14 | 650.45 | 870.34 | 0.000 | 3.109 | 0.000 | 0.338 |
16 | 30_7_3 | 9.50 | 27.08 | 2619.64 | 2934.16 | 0.000 | 1.851 | 0.000 | 0.120 |
17 | 30_7_5 | 8.39 | 26.80 | 1124.07 | 1270.55 | 0.000 | 2.193 | 0.000 | 0.130 |
18 | 30_7_7 | 7.71 | 40.68 | 949.43 | 1464.85 | 0.000 | 4.274 | 0.000 | 0.543 |
19 | 50_5_3 | 9.64 | 40.91 | 2317.16 | 1698.02 | 0.000 | 3.243 | 0.365 | 0.000 |
20 | 50_5_5 | 5.93 | 42.19 | 743.66 | 1704.86 | 0.000 | 6.113 | 0.000 | 1.293 |
21 | 50_5_7 | 8.95 | 31.92 | 987.97 | 1156.88 | 0.000 | 2.567 | 0.000 | 0.171 |
22 | 50_7_3 | 11.33 | 30.27 | 1370.16 | 1561.69 | 0.000 | 1.673 | 0.000 | 0.140 |
23 | 50_7_5 | 8.76 | 63.63 | 2134.78 | 2788.95 | 0.000 | 6.267 | 0.000 | 0.306 |
24 | 50_7_7 | 10.99 | 76.96 | 1747.13 | 1734.35 | 0.000 | 6.003 | 0.007 | 0.000 |
25 | 100_5_3 | 41.99 | 14.57 | 4443.15 | 5164.68 | 1.882 | 0.000 | 0.000 | 0.162 |
26 | 100_5_5 | 9.61 | 59.63 | 1414.03 | 3099.30 | 0.000 | 5.206 | 0.000 | 1.192 |
27 | 100_5_7 | 10.76 | 41.06 | 1578.73 | 1662.72 | 0.000 | 2.816 | 0.000 | 0.053 |
28 | 100_7_3 | 19.51 | 75.68 | 3849.80 | 4032.16 | 0.000 | 2.880 | 0.000 | 0.047 |
29 | 100_7_5 | 17.35 | 43.03 | 3178.86 | 3520.00 | 0.000 | 1.480 | 0.000 | 0.107 |
30 | 100_7_7 | 15.82 | 46.03 | 2882.50 | 2766.84 | 0.000 | 1.910 | 0.042 | 0.000 |
Instance | GD | IGD | RPI | ||||||
---|---|---|---|---|---|---|---|---|---|
HMABC | ABC_SA | HMABC | ABC_SA | HMABC(GD) | ABC_SA (GD) | HMABC(IGD) | ABC_SA (IGD) | ||
1 | 10_5_3 | 3.32 | 27.29 | 140.76 | 315.71 | 0.000 | 4.330 | 0.000 | 1.243 |
2 | 10_5_5 | 3.22 | 24.12 | 261.12 | 303.15 | 0.000 | 4.238 | 0.000 | 0.161 |
3 | 10_5_7 | 4.36 | 20.65 | 270.13 | 365.75 | 0.000 | 5.043 | 0.000 | 0.354 |
4 | 10_7_3 | 4.63 | 24.21 | 221.58 | 436.85 | 0.000 | 7.233 | 0.000 | 0.972 |
5 | 10_7_5 | 4.41 | 24.77 | 194.68 | 309.63 | 0.000 | 6.480 | 0.000 | 0.590 |
6 | 10_7_7 | 4.20 | 18.90 | 234.26 | 337.21 | 0.000 | 3.733 | 0.000 | 0.439 |
7 | 20_5_3 | 3.36 | 23.07 | 199.33 | 302.96 | 0.000 | 4.233 | 0.000 | 0.520 |
8 | 20_5_5 | 3.52 | 20.09 | 218.49 | 286.10 | 0.000 | 4.622 | 0.000 | 0.309 |
9 | 20_5_7 | 3.74 | 23.79 | 339.71 | 382.57 | 0.000 | 3.504 | 0.000 | 0.126 |
10 | 20_7_3 | 5.75 | 33.15 | 424.50 | 589.31 | 0.000 | 5.862 | 0.000 | 0.388 |
11 | 20_7_5 | 5.25 | 24.39 | 387.38 | 466.23 | 0.000 | 4.700 | 0.000 | 0.204 |
12 | 20_7_7 | 4.08 | 27.61 | 321.49 | 659.56 | 0.000 | 5.356 | 0.000 | 1.052 |
13 | 30_5_3 | 8.62 | 44.98 | 376.44 | 812.76 | 0.000 | 4.761 | 0.000 | 1.159 |
14 | 30_5_5 | 6.79 | 39.91 | 491.95 | 724.75 | 0.000 | 3.647 | 0.000 | 0.473 |
15 | 30_5_7 | 6.12 | 42.57 | 635.95 | 761.86 | 0.000 | 5.770 | 0.000 | 0.198 |
16 | 30_7_3 | 9.05 | 46.39 | 662.81 | 1025.79 | 0.000 | 4.215 | 0.000 | 0.548 |
17 | 30_7_5 | 8.39 | 55.41 | 901.06 | 1030.43 | 0.000 | 4.878 | 0.000 | 0.144 |
18 | 30_7_7 | 7.71 | 60.05 | 949.43 | 1388.04 | 0.000 | 5.958 | 0.000 | 0.462 |
19 | 50_5_3 | 9.64 | 59.67 | 774.61 | 1420.97 | 0.000 | 4.126 | 0.000 | 0.834 |
20 | 50_5_5 | 5.93 | 30.45 | 717.62 | 1096.05 | 0.000 | 5.600 | 0.000 | 0.527 |
21 | 50_5_7 | 8.95 | 64.08 | 987.97 | 1228.82 | 0.000 | 6.785 | 0.000 | 0.244 |
22 | 50_7_3 | 11.33 | 78.91 | 1082.87 | 1335.06 | 0.000 | 5.189 | 0.000 | 0.233 |
23 | 50_7_5 | 8.76 | 28.13 | 1204.70 | 1072.93 | 0.000 | 4.134 | 0.123 | 0.000 |
24 | 50_7_7 | 10.99 | 77.36 | 1747.13 | 1928.21 | 0.000 | 6.163 | 0.000 | 0.104 |
25 | 100_5_3 | 15.06 | 83.55 | 1550.98 | 2851.96 | 0.000 | 5.967 | 0.000 | 0.839 |
26 | 100_5_5 | 9.61 | 46.16 | 1414.03 | 2038.97 | 0.000 | 2.214 | 0.000 | 0.442 |
27 | 100_5_7 | 10.76 | 46.56 | 1393.45 | 1816.44 | 0.000 | 6.039 | 0.000 | 0.304 |
28 | 100_7_3 | 19.51 | 132.06 | 3849.80 | 3851.80 | 0.000 | 4.548 | 0.000 | 0.066 |
29 | 100_7_5 | 17.35 | 108.95 | 3154.11 | 3158.11 | 0.000 | 3.805 | 0.000 | 0.409 |
30 | 100_7_7 | 15.82 | 117.16 | 2397.02 | 2610.24 | 0.000 | 3.327 | 0.000 | 0.089 |
Instance | GD | IGD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HMABC | PSO_GA | MOGA | EGA | NSGA-II | HMABC | PSO_GA | MOGA | EGA | NSGA-II | |
10_5_3 | 4.37 | 22.80 | 25.39 | 24.12 | 23.72 | 349.94 | 263.98 | 205.77 | 324.28 | 368.96 |
10_5_5 | 2.79 | 22.17 | 20.76 | 23.49 | 21.95 | 144.38 | 359.31 | 296.16 | 415.14 | 397.65 |
10_5_7 | 3.22 | 19.97 | 19.45 | 17.34 | 20.06 | 213.79 | 324.16 | 255.99 | 336.53 | 453.64 |
10_7_3 | 3.11 | 25.94 | 21.81 | 26.75 | 26.07 | 143.64 | 374.68 | 278.35 | 368.48 | 503.63 |
10_7_5 | 4.36 | 33.27 | 32.51 | 36.03 | 34.82 | 401.59 | 825.35 | 605.05 | 942.28 | 1023.85 |
10_7_7 | 4.53 | 30.05 | 28.34 | 31.64 | 30.26 | 440.87 | 426.78 | 378.72 | 555.72 | 624.34 |
20_5_3 | 2.82 | 19.43 | 19.38 | 21.54 | 19.41 | 166.83 | 270.16 | 256.88 | 300.27 | 335.54 |
20_5_5 | 3.36 | 15.99 | 14.46 | 17.75 | 15.84 | 310.63 | 279.25 | 268.53 | 253.77 | 272.18 |
20_5_7 | 4.18 | 22.95 | 23.36 | 23.08 | 23.14 | 305.85 | 298.31 | 260.88 | 258.91 | 407.85 |
20_7_3 | 5.34 | 41.21 | 38.64 | 41.37 | 39.43 | 532.27 | 864.07 | 727.88 | 901.42 | 883.44 |
20_7_5 | 4.00 | 38.12 | 35.51 | 39.18 | 35.77 | 330.53 | 873.60 | 722.42 | 926.32 | 929.42 |
20_7_7 | 5.03 | 38.23 | 36.00 | 39.20 | 38.57 | 354.79 | 611.49 | 491.04 | 620.85 | 669.22 |
30_5_3 | 6.51 | 51.81 | 48.21 | 51.11 | 48.81 | 607.98 | 985.44 | 795.49 | 958.26 | 1169.06 |
30_5_5 | 4.79 | 42.47 | 40.77 | 43.45 | 42.23 | 245.48 | 577.69 | 500.30 | 617.93 | 625.39 |
30_5_7 | 6.04 | 54.26 | 50.85 | 54.42 | 54.82 | 650.77 | 1544.43 | 1199.88 | 1551.18 | 1604.49 |
30_7_3 | 6.39 | 48.06 | 45.83 | 48.72 | 46.88 | 766.70 | 1623.89 | 1315.66 | 1571.76 | 1678.64 |
30_7_5 | 7.76 | 67.57 | 64.05 | 68.32 | 64.23 | 1255.27 | 2659.39 | 2315.85 | 2643.06 | 2733.84 |
30_7_7 | 7.43 | 67.31 | 65.36 | 67.43 | 68.56 | 513.91 | 1062.29 | 985.53 | 1038.10 | 1130.54 |
50_5_3 | 8.06 | 71.43 | 70.67 | 71.21 | 72.34 | 1009.00 | 2276.26 | 2024.25 | 2142.57 | 2243 |
50_5_5 | 7.14 | 58.90 | 57.35 | 59.57 | 58.52 | 852.99 | 1815.14 | 1657.73 | 1929.28 | 1874.77 |
50_5_7 | 8.72 | 69.13 | 67.21 | 70.36 | 65.14 | 1087.23 | 1999.11 | 1824.04 | 1962.75 | 1917.96 |
50_7_3 | 12.51 | 91.45 | 89.40 | 91.94 | 91.96 | 1846.28 | 2635.69 | 2522.75 | 2595.38 | 2667.69 |
50_7_5 | 6.40 | 92.13 | 89.21 | 92.26 | 92.22 | 470.16 | 2872.91 | 2726.18 | 2871.87 | 2934.8 |
50_7_7 | 9.09 | 106.53 | 104.07 | 104.89 | 105.56 | 1218.31 | 4302.17 | 4136.74 | 4226.80 | 4363.43 |
100_5_3 | 15.07 | 110.85 | 109.26 | 110.78 | 110.73 | 2491.30 | 3585.06 | 3196.22 | 3318.53 | 3361.83 |
100_5_5 | 11.31 | 103.95 | 100.41 | 102.06 | 101.39 | 1708.33 | 3827.34 | 3521.87 | 3566.03 | 3860.15 |
100_5_7 | 10.89 | 108.18 | 108.36 | 109.14 | 108.07 | 1269.50 | 3328.00 | 3261.61 | 3259.70 | 3398.42 |
100_7_3 | 17.33 | 153.63 | 150.95 | 152.35 | 149.63 | 2689.83 | 5169.45 | 5030.77 | 5142.87 | 5247.48 |
100_7_5 | 12.31 | 128.20 | 126.65 | 128.31 | 130.8 | 1328.98 | 3919.76 | 3840.55 | 3855.55 | 3923.66 |
100_7_7 | 16.36 | 143.45 | 142.54 | 142.48 | 144.14 | 3475.67 | 6744.54 | 6914.76 | 6670.63 | 6778.14 |
Average | 7.37 | 63.31 | 61.56 | 63.68 | 62.84 | 906.09 | 1889.99 | 1750.59 | 1870.87 | 1946.10 |
Instance | C(HMABC, PSO_GA) | C(PSO_G, HMABC) | C(HMABC, MOGA) | C(MOGA, HMABC) | C(HMAC, EGA) | C(EGA, HMABC) | C(HMAB, HDMICA) | C(HDMIC, HMABC) |
---|---|---|---|---|---|---|---|---|
10_5_3 | 0.8429 | 0.0053 | 1.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0333 | 0.0105 |
10_5_5 | 0.0250 | 0.0267 | 0.1000 | 0.1512 | 0.2000 | 0.0000 | 0.1222 | 0.0133 |
10_5_7 | 1.0000 | 0.0000 | 0.2000 | 0.0875 | 0.2000 | 0.0000 | 0.1200 | 0.0412 |
10_7_3 | 0.2000 | 0.1125 | 0.2000 | 0.1188 | 0.2000 | 0.0000 | 0.1429 | 0.0118 |
10_7_5 | 0.2000 | 0.0846 | 0.2000 | 0.1077 | 0.2000 | 0.0000 | 0.1750 | 0.0000 |
10_7_7 | 0.1636 | 0.1371 | 0.0741 | 0.1371 | 0.1571 | 0.0000 | 0.1400 | 0.0000 |
20_5_3 | 0.1846 | 0.0000 | 0.1500 | 0.0000 | 0.2000 | 0.0000 | 0.0571 | 0.0222 |
20_5_5 | 0.1294 | 0.1231 | 0.1053 | 0.1231 | 0.0667 | 0.0148 | 0.1800 | 0.0148 |
20_5_7 | 0.1846 | 0.1500 | 0.1053 | 0.1500 | 0.1818 | 0.0000 | 0.1077 | 0.0308 |
20_7_3 | 0.1474 | 0.1152 | 0.0240 | 0.1212 | 0.1565 | 0.0000 | 0.0842 | 0.0343 |
20_7_5 | 0.2000 | 0.1086 | 0.1875 | 0.1486 | 0.2000 | 0.0000 | 0.1474 | 0.0000 |
20_7_7 | 0.0857 | 0.1091 | 0.2000 | 0.1182 | 0.1909 | 0.0000 | 0.1333 | 0.0182 |
30_5_3 | 0.2000 | 0.0308 | 0.0889 | 0.0769 | 0.1895 | 0.0000 | 0.1250 | 0.0074 |
30_5_5 | 0.2000 | 0.0600 | 0.1333 | 0.1200 | 0.0207 | 0.0625 | 0.0889 | 0.0188 |
30_5_7 | 0.0313 | 0.0865 | 0.2000 | 0.1135 | 0.2000 | 0.0000 | 0.1077 | 0.0059 |
30_7_3 | 0.2000 | 0.0533 | 0.1846 | 0.1333 | 0.0000 | 0.1056 | 0.1571 | 0.0056 |
30_7_5 | 0.0541 | 0.0286 | 1.0000 | 0.0000 | 0.1500 | 0.0000 | 0.1158 | 0.0000 |
30_7_7 | 0.0118 | 0.1000 | 0.2000 | 0.1273 | 0.2000 | 0.0000 | 0.0750 | 0.0222 |
50_5_3 | 0.0400 | 0.0500 | 0.2000 | 0.1111 | 0.1500 | 0.0000 | 0.1200 | 0.0182 |
50_5_5 | 0.0632 | 0.0444 | 0.2000 | 0.1000 | 0.2000 | 0.0000 | 0.0714 | 0.0429 |
50_5_7 | 0.1130 | 0.0714 | 0.2000 | 0.1286 | 0.2000 | 0.0000 | 0.1500 | 0.0333 |
50_7_3 | 0.1188 | 0.0000 | 0.2000 | 0.0759 | 0.1714 | 0.0000 | 0.1429 | 0.0077 |
50_7_5 | 0.1313 | 0.0211 | 1.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0667 | 0.0571 |
50_7_7 | 0.1034 | 0.0071 | 0.2000 | 0.0429 | 0.2000 | 0.0000 | 0.0824 | 0.0158 |
100_5_3 | 0.0706 | 0.0400 | 0.2000 | 0.0467 | 0.0000 | 0.0848 | 0.1412 | 0.0000 |
100_5_5 | 0.1100 | 0.0129 | 0.2000 | 0.0710 | 0.2000 | 0.0000 | 0.1833 | 0.0150 |
100_5_7 | 0.1455 | 0.0074 | 0.2000 | 0.0741 | 0.2000 | 0.0000 | 0.0500 | 0.0182 |
100_7_3 | 0.1565 | 0.0056 | 0.2000 | 0.0278 | 0.2000 | 0.0000 | 0.1556 | 0.0000 |
100_7_5 | 0.1209 | 0.0364 | 0.2000 | 0.0485 | 0.2000 | 0.0000 | 0.1556 | 0.0057 |
100_7_7 | 0.0909 | 0.0200 | 1.0000 | 0.0000 | 0.2000 | 0.0000 | 0.1333 | 0.0148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Li, J.; Li, J. Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect. Mathematics 2025, 13, 472. https://doi.org/10.3390/math13030472
Du Z, Li J, Li J. Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect. Mathematics. 2025; 13(3):472. https://doi.org/10.3390/math13030472
Chicago/Turabian StyleDu, Zhaosheng, Junqing Li, and Jiake Li. 2025. "Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect" Mathematics 13, no. 3: 472. https://doi.org/10.3390/math13030472
APA StyleDu, Z., Li, J., & Li, J. (2025). Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect. Mathematics, 13(3), 472. https://doi.org/10.3390/math13030472