Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm
Abstract
:1. Classical Relativistic Electrodynamics Models Revisited: Lagrangian and Hamiltonian Analysis
1.1. Introductory Setting
“Now we would like to state the law that for quantum mechanics replaces the law F = qv × B. It will be the law that determines the behavior of quantum mechanical particles in an electromagnetic field. Since what happens is determined by amplitudes, the law must tell us how the magnetic influences affect the amplitudes; we are no longer dealing with the acceleration of the particle. The law is the following: the phase of the amplitude to arrive via any trajectory is changed by the presence of a magnetic field by an amount equal to the integral of the vector potential along the whole trajectory times the charge of the particle over Planck’s constant. That is,
1.2. Classical Relativistic Electrodynamics Revisited
1.3. Ampère’s Law in Electrodynamics–The Classical and Modified Lorentz Forces Derivations
“It is true that Ampere’s formula is no more admissible today, because it is based on the Newtonian idea of instantaneous action at a distance and it leads notably to the strange consequence that two consecutive elements of the same current should repel each other. Ampere presumed to have demonstrated experimentally this repulsion force, but on this point he was wrong. The modern method, the more rational in order to establish the existence of electrodynamics forces and to determine their value consists in starting from the electrostatic interaction law of Coulomb between two charges (two electrons), whose one of them is at rest in the adopted frame of reference and studying how the interaction forces transform when one goes, thanks to the Lorentz-Einstein relations, to a system of coordinates in which both charges are in motion. One sees the appearance of additional forces proportional to e2/c2, e being the electrostatic charge and c the light velocity, hence one sees that not only the spin but also the magnetic moment of the electron are of relativistic origin - as Dirac has shown - but that the whole of electromagnetic forces has such an origin.”
2. Vacuum Field Theory Electrodynamics Equations: Lagrangian Analysis
2.1. A Point Particle Moving in Vacuo—An Alternative Electrodynamic Model
2.2. A Moving Two Charge System in a Vacuum—An Alternative Electrodynamic Model
2.3. A moving charged point particle formulation dual to the classical alternative electrodynamic model
2.4. Vacuum Field Theory Electrodynamics Equations: Hamiltonian Analysis
2.5. Quantization of Electrodynamics Models via the Vacuum Field Theory Approach
2.5.1. The Problem Setting
2.5.2. Free Point Particle Electrodynamics Model and Its Quantization
2.5.3. Classical Charged Point Particle Electrodynamics Model and Its Quantization
2.5.4. Modified Charged Point Particle Electrodynamics Model and Its Quantization
3. The Modified Lorentz Force, Radiation Theory and the Abraham–Lorentz Electron Inertia Problem
3.1. Introductory Setting
3.2. The Radiation Reaction Force: Vacuum Field Theory Approach
3.3. Comments
4. Electron Inertia via the Feynman Proper Time Paradigm and Vacuum Field Theory Approach
4.1. Introduction
4.2. Feynman Proper Time Paradigm Analysis
4.3. Analysis of the Maxwell and Lorentz Force Equations
4.3.1. The Maxwell Equations
4.3.2. Comments
5. Charged Point Particle Dynamics and a Hadronic String Model Analysis
5.1. Classical Relativistic Electrodynamics Foundations: A Charged Point Particle Analysis
5.2. Least Action Principle Analysis
6. The Dirac–Fock–Podolsky Problem and Symplectic Properties of the Maxwell and Yang–Mills Dynamical Systems
6.1. Introduction
6.2. Hamiltonian Analysis of the Maxwell Dynamical Systems
7. Conclusions
Acknowledgments
Author Contributions
References
- Jackson, J.D. Classical Electrodynamics, 3rd ed; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Field Theory; Volume 2, “Nauka” Publisher: Moscow, Russia, 1973. [Google Scholar]
- Pauli, W. Theory of Relativity; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Rohrlich, F. Classical Charged Particles; Addison-Wesley: Reading, MA, USA, 1965. [Google Scholar]
- Aharonov, Y.; Bohm, D. Topological quantum effects for neutral particles. Phys. Rev. 1959, 115, 485. [Google Scholar]
- Trammel, G.T. Aharonov-Bohm paradox. Phys. Rev. 1964, 134, B1183–N1184. [Google Scholar]
- Boyer, T.H. Interaction of a Charged Particle with a Constant-Current Solenoid. Phys. Rev. D 1973, 8, 1679. [Google Scholar]
- Barrett, T.W. Electromagnetic phenomena not explained by Maxwell’s equations. In Essays on the Formal Aspects of Maxwell Theory; Lakhtakia, A., Ed.; World Scientific: Hackensack, NJ, USA, 1993; pp. 8–86. [Google Scholar]
- Feynman, R.; Leighton, R.; Sands, M. The Feynman Lectures on Physics. Electrodynamics, 2nd ed; Addison-Wesley, Publishing Company: Reading, MA, USA, 1964. [Google Scholar]
- Dyson, F.J. Feynman’s proof of the Maxwell equations. Am. J. Phys. 1990, 58, 209–211. [Google Scholar]
- Dyson, F. J. Feynman at Cornell. Phys. Today 1989, 42, 32–38. [Google Scholar]
- Fermi, E. Dimostrazione che in generate un sistema meccanico normale e quasi ergodico. Nuovo Cimento 1923, 25, 159. [Google Scholar]
- Glauber, R.J. Quantum Theory of Optical Coherence. In Selected Papers and Lectures; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Schott, G.A. Electromagnetic Radiation; Cambridge University Press: Cambridge, UK, 1912. [Google Scholar]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed; Benjamin Cummings: New York, NY, USA.
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Thirring, W. Classical Mathematical Physics, 3rd ed; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K.; Taneri, U.; Prykarpatsky, Y.A. The electromagnetic Lorentz condition problem and symplectic properties of Maxwell- and Yang–Mills-type dynamical systems. J. Phys. A: Math. Theor. 2009, 42, 165401–165416. [Google Scholar]
- Prykarpatsky, A.K.; Bogolubov, N.N., Jr.; Taneri, U. The vacuum structure, special relativity and quantum mechanics revisited: A field theory no-geometry approach. Theor. Math. Phys. 2009, 160, 1079–1095. [Google Scholar]
- Marsden, J.; Chorin, A. Mathematical Foundations of the Mechanics of Liquid; Springer: New York, NY, USA, 1993. [Google Scholar]
- Repchenko, O. Field Physics; Galeria Press: Moscow, Russia, 2005; in Russian. [Google Scholar]
- Prykarpatsky, A.K.; Bogolubov, N.N., Jr.; Taneri, U. The field structure of vacuum, Maxwell equations and relativity theory aspects, Preprint 2008. Available online: http://arxiv.org/pdf/0807.3691v9.pdf accessed on 13 April 2015.
- Deser, S.; Jackiw, R. Time travel? Preprint 1992. Available online: http://arxiv.org/abs/hep-th/9206094 accessed on 13 April 2015.
- Dunner, G.; Jackiw, R. “Peierles substitution” and Chern–Simons quantum mechanics. Preprint 1992. Available online: http://arxiv.org/abs/hep-th/92004057 accessed on 13 April 2015.
- Puthoff, H.E. Casimir vacuum energy and the semicalssical electron. Int. J. Theor. Phys. 2007, 46, 3005–3008. [Google Scholar]
- Wilczek, F. Origins of Mass Preprint, 2012. Available online: http://doi:arxiv.org/abs/hep-ph/1206.7114v2 accessed on 13 April 2015.
- Wilczek, F. QCD and natural phylosophy. Ann. Henry Poincare. 2003, 4, 211–228. [Google Scholar]
- Bulyzhenkov-Widicker, I.E. Einstein’s gravitation for Machian relativism of nonlocal energy charges. Int. J. Theor. Phys. 2008, 47, 1261–1269. [Google Scholar]
- Bulyzhenkov, I.E. Einstein’s curvature for nonlocal gravitation of Gesamt energy carriers. Preprint, 2006. Available online: http://arxiv.org/abs/math-ph/0603039 accessed on 13 April 2015.
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Quantum method of generating Bogolubov functionals in statistical physics: Current Lie algebras, their representations and functional equations. Phys. Elem. Part. At. Nucl. 1986, 17, 791–827, in Russian. [Google Scholar]
- Brillouin, L. Relativity Reexamined; Academic Press: New York NY, USA; London, UK, 1970. [Google Scholar]
- Feynman, R.P. Statistical Mechanics, Advanced Book Classics; Perseus Books: New York, NY, USA, 1998. [Google Scholar]
- Brans, C.H.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: New York, NY, USA, 1931. [Google Scholar]
- Bogolubov, N.N.; Bogolubov, N.N., Jr. Introduction into Quantum Statistical Mechanics; World Scientific: Hackensack, NJ, USA, 1986. [Google Scholar]
- Hajra, S. Classical interpretations of relativistic phenomena. J. Mod. Phys. 2012, 3, 187–189. [Google Scholar]
- Hammond, R.T. Electrodynamics and Radiation reaction. Found. Phys. 2013, 43, 201–209. [Google Scholar]
- Logunov, A.A. The Theory of Gravity; Nauka Publisher: Moscow, Russia, 2000. [Google Scholar]
- Logunov, A.A.; Mestvirishvili, M.A. Relativistic Theory of Gravitation; Nauka Publisher: Moscow, Russia, 1989; In Russian. [Google Scholar]
- Yaremko, Y.; Tretyak, V. Radiation Reaction in Classical Field Theory; Lap Lambert Academic Publishing: Saarbrücken, Germany, 2012. [Google Scholar]
- Mermin, N.D. It’s About Time: Understanding Einstein’s Relativity; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Mermin, N.D. Relativity without light. Am. J. Phys. 1984, 52, 119–124. [Google Scholar]
- Neumann, J. von. Mathematische Grundlagen der Quanten Mechanik; Springer: Berlin, Germany, 1932. [Google Scholar]
- Urban, M.; Couchot, F.; Sarazin, X.; Djannati-Atai, A. The quantum vacuum as the origin of the speed of light, Preprint 2005. Available online: http://arxiv.org/abs/1302.6165v1 accessed on 13 April 2015.
- Klymyshyn, I.A. Relativistic astronomy; “Naukova Dumka” Publisher: Kyiv, Ukraine, 1980; In Ukrainian. [Google Scholar]
- Aquino, F. Mathematical foundations of the relativistic theory of quantum gravity. Pac. J. Sci. Technol. 2010, 11, 173–232. [Google Scholar]
- Jackiw, R.; Polychronakos, A.P. Dynamical Poincare symmetry realized by field-dependent diffeomorhisms, Preprint 1998. Available online: http://arxiv.org/abs/hep-th/9809123 accessed on 13 April 2015.
- Santilli, R.M. The etherino and/or neutrino hypothesis. Found. Phys. 2007, 37, 670–694. [Google Scholar]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. Relative locality: A deepening of the relativity principle, Preprint 2011. Available online: http://arxiv.org/abs/1101.0931v2 accessed on 13 April 2015.
- Smolin, L. Fermions and Topology, Preprint 2005. Available online: http://arxiv.org/abs/hep-ph/0106235 accessed on 13 April 2015.
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–222. [Google Scholar]
- Penrose, R. Twistor algebra. J. Math. Phys. 1966, 8, 345–366. [Google Scholar]
- Darrigol, O. Les Equations de Maxwell, de MacCullagh’a, Lorentz. Collection Belin Sup Histoire des Sciences-Physique; Springer: Berlin-Heidelberg, Germany, 2005. [Google Scholar]
- Nikolaev, G.V. Modern electrodynamics and reasons of its paradoxicity. In Prospects of Construction of Not Inconsistent Electrodynamics. Theories, Experiments, Paradoxes, Second ed; Tomsk Polytechnical University: Tomsk, Russia, 2003; in Russian. [Google Scholar]
- Pierseaux, Y.; et Rousseaux, G. Les structures fines de l’electromagnetisme classique et de la relativite restreinte, Preprint 2006. Available online: http://arXiv:physics/0601023v1 accessed on 13 April 2015.
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization. Found Phys. 2010, 40, 469–493. [Google Scholar]
- Kastler, A. Ampère et les lois de relectrodynamique. Rev. Hist. Sei. 1977, 72, 1193–1207. [Google Scholar]
- Martins Alexandre, A.; Pinheiro Mario, J. On the electromagnetic origin of inertia and inertial mass. Int. J. Theor. Phys. 2008, 47, 2706–2715. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Hentosh, O.Y.; Prytula, M.M.; Prykarpatsky, A.K. Differential-Geometric Integrability Fundamentals of Nonlinear Dynamical Systems on Functional Manifolds, 2nd ed; Lviv University Publisher: Lviv, Ukraine, 2006. [Google Scholar]
- Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1998; p. 553. [Google Scholar]
- Prykarpatsky, Y.A.; Samoilenko, A.M.; Prykarpatsky, A.K. The geometric properties of canonically reduced symplectic spaces with symmetry and their relationship with structures on associated principal fiber bundles and some applications. Opusc. Math. 2005, 25, 287–298. [Google Scholar]
- Kupershmidt, B.A. Infinite-dimensional analogs of the minimal coupling principle and of the Poincare lemma for differential two-forms. Diff. Geom. Appl. 1992, 2, 275–293. [Google Scholar]
- Bogolubov, N.N.; Shirkov, D.V. Introduction to Quantized Field Theory; Nauka: Moscow, Russia, 1984; in Russian. [Google Scholar]
- Prykarpatsky, A.K.; Bogolubov, N.N., Jr.; Taneri, U. The Relativistic Electrodynamics Least Action Principles Revisited: New Charged Point Particle and Hadronic String Models Analysis. Int. J. Theor. Phys. 2010, 49, 798–820. [Google Scholar]
- Bogolubov, N.N.; Shirkov, D.V. Quantum Fields; Nauka: Moscow, Russia, 1984. [Google Scholar]
- Dirac, P.A.M. The principles of quantum mechanics, 2nd ed; Oxford University Press: Oxford, UK, 1935. [Google Scholar]
- Dirac, P.A.M. Generalized Hamiltonian dynamics. Can. J. Math. 1950, 2, 129–148. [Google Scholar]
- Dirac, P.A.M.; Fock, W.A.; Podolsky, B. On quantum electrodynamics. Phys. Zs. Soviet. 1932, 2, 468. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, 6th ed; “Nauka” Publisher: Moscow, Russia, 1974. [Google Scholar]
- Bolotovskii, B.M.; Stolyarov, S.N. Radiation from and energy loss by charged particles in moving media. Sov. Phys. Usp. 1992, 35, 143–150. [Google Scholar]
- Jackiw, R. Lorentz Violation in a Diffeomorphism-Invariant Theory, Preprint 2007. Available online: http://arxiv.org/abs/hep-th/0709.2348 accessed on 13 April 2015.
- Pegg, D.T. Absorber Theory of Radiation. Rep. Prog. Phys. 1975, 38, 1339. [Google Scholar]
- Medina, R. Radiation reaction of a classical quasi-rigid extended particle. J. Phys. A: Math. Gen. 2006, 39, 3801–3816. [Google Scholar]
- Wheeler, J.B.; Feynman, R.P. Interaction with the Absorber as the Mechanism of Radiation. Rev. Mod. Phys. 1946, 17, 157. [Google Scholar]
- Morozov, V.B. On the question of the electromagnetic momentum of a charged body. Phys. Usp. 2011, 181, 389–392. [Google Scholar]
- Teitelboim, C. Splitting of the Maxwell Tensor: Radiation Reaction without Advanced Fields. Phys. Rev. 1970, D1, 1512. [Google Scholar]
- Kosyakov, B.P. Radiation in electrodynamics and in Yang–Mills theory. Sov. Phys. Usp. 1992, 35, 135–142. [Google Scholar]
- Simulik, V.M. The Electron as a System of Classical Electromagnetic and Scalar Fields. In What Is the Electron? Simulik, V.M., Ed.; Apeiron Publisher: Montreal, Canada, 2005; pp. 109–134. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. The Maxwell Electromagnetic Equations and the Lorentz Type Force Derivation—The Feynman Approach Legacy. Int. J. Theor. Phys. 2012, 5, 237–245. [Google Scholar]
- Godbillon, C. Geometrie Differentielle et Mecanique Analytique; Hermann Press: Paris, France, 1969. [Google Scholar]
- Gill, T.L.; Zachary, W.W. Two mathematically equivalent versions of Maxwell’s equations. Found. Phys. 2011, 4, 99–128. [Google Scholar]
- Gill, T.L.; Zachary, W.W.; Lindsey, J. The classical electron problem. Found. Phys. 2011, 31, 1299–1355. [Google Scholar]
- Einstein, A. Jahrbuch Radioaktivitat; Springer: Berlin, Germany, 1907; Volume V, p. 422. [Google Scholar]
- In Einstein’s own words: “You know, it would be sufficient to really understand the electron”, quoted by Hans G. Dehmlet in his Nobel Lecture. In Nobel Lectures, Physics 1981–1990; World Scientific Publishing Co: Singapore, 1993.
- Minkowski, H. Raum und Zeit. Physik. Z 1909, 10, 104. [Google Scholar]
- Poincaré, H. C.R. “Sur la dynamique de l’electron”. Acad. Sci. (Paris) 1905, 140, 1504–1508. [Google Scholar]
- Blackmore, D.; Prykarpatski, A.K.; Bogolubov, N.N., Jr. Mathematical foundations of the classical Maxwel–Lorentz electrodynamic models in the canonical Lagrangian and Hamiltonian formalisms. Univers. J. Phys. Appl. 2013, 1, 160–178. [Google Scholar]
- Prykarpatski, A.K. Classical Electromagnetic Theory Revisiting: The A.M. Ampere Law and the Vacuum Field Theory Approach. Univers. J. Phys. Appl. 2014, 2, 381–413. [Google Scholar]
- Rousseaux, G. The gauge non-invariance of classical electromagnetism, Preprint 2007. Available online: http://arxiv.org/abs/physics/0506203v1 accessed on 13 April 2015.
- Rousseaux, G. On the physical meaning of the gauge conditions of Classical Electromagnetism: The hydrodynamics analogue viewpoint, Preprint 2005. Available online: http://arxiv.org/abs/physics/0511047v1 accessed on 13 April 2015.
- Huang, K. Statistical Mechanics; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Abraham, M. Des Electrons. In Nachrichten von der Geselschaft der Wissenschafften zu Göttingen, Mathematisch-Physikalische Klasse; Göttingen, Germany, 1902; p. 20. [Google Scholar]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. R. Neth. Acad. Arts Sci. 1904, 6, 809–831. [Google Scholar]
- Lorentz, H.A. Theory of Electrons. In Archives Neerlandaises des Sciences Exactes et Naturelles; Teubner: Leipzig, Germany, 1892–1916; p. 363. [Google Scholar]
- Lorentz, H.A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat; Editions Jacques Gabay: Paris, France, 1992. [Google Scholar]
- Barbashov, B.M.; Nesterenko, V.V. Introduction to the Relativistic String Theory; World Scientific: Singapore, 1990. [Google Scholar]
- Dubrovin, B.A.; Novikov, S.P.; Fomenko, A.T. Modern Geometry; Nauka: Moscow, Russia, 1986; in Russian. [Google Scholar]
- Faddeev, L.D. Energy problem in the Einstein gravity theory. Russ. Phys. Surv. 1982, 136, 435–457, in Russian. [Google Scholar]
- Kleinert, H. Path Integrals, Second ed; World Scientific: Hackensack, NJ, USA, 1995; p. 685. [Google Scholar]
- Marsden, J.; Weinstein, A. The Hamiltonian structure of the Maxwell–Vlasov equations. Phys. D 1982, 4, 394–406. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogolubov, N.N., Jr.; Prykarpatski, A.K.; Blackmore, D. Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm. Mathematics 2015, 3, 190-257. https://doi.org/10.3390/math3020190
Bogolubov NN Jr., Prykarpatski AK, Blackmore D. Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm. Mathematics. 2015; 3(2):190-257. https://doi.org/10.3390/math3020190
Chicago/Turabian StyleBogolubov, Nikolai N., Jr., Anatolij K. Prykarpatski, and Denis Blackmore. 2015. "Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm" Mathematics 3, no. 2: 190-257. https://doi.org/10.3390/math3020190
APA StyleBogolubov, N. N., Jr., Prykarpatski, A. K., & Blackmore, D. (2015). Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm. Mathematics, 3(2), 190-257. https://doi.org/10.3390/math3020190