The Role of the Mittag-Leffler Function in Fractional Modeling
Abstract
:1. Introduction
2. History of the Mittag-Leffler Function
3. Analytic Properties
- the order ρ of an entire function :
- – the type σ of an entire function of the order ρ:
- – the Laplace transform of a function f(t):
- – the Riemann-Liouville fractional integral of a function f(t):
- – the Riemann-Liouville fractional derivative of a function f(t):
4. Applications to Fractional Order Equations
5. Mittag-Leffler Functions in Fractional Modeling
6. Conclusions
Acknowledgments
Conflicts of Interests
References
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications; Springer-Verlag: Berlin-Heidelberg, Geramny, 2014. [Google Scholar]
- Diethelm, K. The Analysis of Differential Equations of Fractional Order: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer Verlag: Berlin-Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Dzherbashian, M.M. Integral Transforms and Representation of Functions in the Complex Domain; Nauka: Moscow, Russian, 1966; in Russian. [Google Scholar]
- Gorenflo, R.; Vessella, S. Abel Integral Equations: Analysis and Applications; Springer-Verlag: Berlin, Germany, 1991. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Letnikov, A.V.; Chernykh, V.A. The Foundation of Fractional Calculus; Neftegaz: Moscow, Russian, 2011; in Russian. [Google Scholar]
- Nakhushev, A.M. Fractional Calculus and Its Applications.; Fizmatlit: Moskva, Russia, 2003; in Russian. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon: New York, NY, USA; Breach Science Publishers: London, UK, 1993; Extended edition of the Russian original, Nauka i Tekhnika, Minsk; 1987.
- Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. (Eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. (Eds.) Springer Verlag: Berlin, Germany, 2007.
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; Hilfer, R. (Ed.) World Scientific: Singapore, 2000.
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press and World Scientific: Singapore, 2010. [Google Scholar]
- Baleanu, D.; Güvenç, Z.B.; Tenreiro Machado, J.A. New Trends in Nanotechnology and Fractional Calculus Applications; Baleanu, D., Güvenç, Z.B., Tenreiro Machado, J.A., Eds.; Springer Verlag: Dordrecht, The Netherlands; Heidelberg, Germany, 2010. [Google Scholar]
- Uchaikin, V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany; Higher Education Press: Beijing, China, 2013; Volume I–II. [Google Scholar]
- West, B. J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Springer Verlag: New York, NY, USA, 2003. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997; Bainov, D., Ed.; VSP Publishers: Utrecht, The Netherlands; Tokyo, Japan, 1998; pp. 195–202.
- Srivastava, H.M.; Harjule, P.; Jain, R. A general fractional differential equation associated with an integral operator with the H-function in the kernel. Russian J. Math. Phys. 2015, 22, 112–126. [Google Scholar]
- Srivastava, H.M. Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 2010, 21, 797–814. [Google Scholar]
- Hardy, G.H. Gösta Mittag-Leffler, 1846–1927. Proc. R. Soc. Lond. A 1928, V–VIII, 119. [Google Scholar]
- Le Roy, É. Valeurs asymptotiques de certaines séries procédant suivant les puissances entières et positives d’une variable réelle. Darboux Bull. 1899, 2, 245–268. [Google Scholar]
- Lindelöf, E. Sur le prolongement analytique. Bull. de la Soc. math. de Fr. 1901, 29, 157–160. [Google Scholar]
- Malmquist, J. Sur le calcul des integrales d’un système d’équations différentielles par la methodé de Cauchy-Lipschitz. Arkiv för Mat. Astr. och Fysik Bd. 1903, 1, 149–156. [Google Scholar]
- Wiman, A. Über die Nullstellen der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Saigo, M. Fractional integral and derivatives of Mittag-Leffler type function. Dokl. Akad. Nauk Belarusi 1995, 39, 22–26, in Russian. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kilbas, A.A.; Saigo, M. H-Transform. Theory and Applications; Chapman and Hall/CRC: New York, NY, USA, 2004. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function. Theory and Applications; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Al-Bassam, M.A.; Luchko, Y.F. On generalized fractional calculus and its application to the solution of integro-differential equations. J. Fract. Calc. 1995, 7, 69–88. [Google Scholar]
- Kiryakova, V. Multiindex Mittag-Leffler functions, related Gelfond- Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 1999, 2, 445–462. [Google Scholar]
- Kiryakova, V.; Luchko, Yu. The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis. In Application of Mathematics in Technical and Natural Sciences (CP1301, AMiTaNS’10); Todorov, M.D., Christov, C.I., Eds.; American Institute of Physics: Melville, NY, USA, 2010; pp. 597–612. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar]
- Saxena, R.K.; Nishimoto, K. N-Fractional Calculus of Generalized Mittag-Leffler functions. J. Fract. Calc. 2010, 37, 43–52. [Google Scholar]
- Paneva-Konovska, J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. Comptes rendus de l’Academie Bulgare des Sciences 2011, 64, 1089–1098. [Google Scholar]
- Gerhold, S. Asymptotics for a variant of the Mittag-Leffler function. Int. Trans. Spec. Func. 2012, 23, 397–403. [Google Scholar]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Int. Trans. Spec. Func. 2013, 24, 773–782. [Google Scholar]
- Popov, A.Y.; Sedletskii, A.M. Zeros distribution of Mittag-Leffler functions. Contemp. Math. Fundam. Dir. 2011, 40, 3–171, in Russian. [Google Scholar]
- Podlubny, I. Mittag-Leffler Function. 2006. Available online: http://www.mathworks.com/matlabcentral/fileexchange.
- Hille, E.; Tamarkin, J.D. On the theory of linear integral equations. Ann. Math. 1930, 31, 479–528. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Luchko, Y. Operational method in fractional calculus. Frac. Calc. Appl. Anal. 1999, 2, 463–488. [Google Scholar]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 2nd ed; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order: methods, results and problems–II. Appl. Anal. 2002, 81, 435–494. [Google Scholar]
- Rabotnov, Y.N. Elements of Hereditary Solid Mechanics; Mir Publishers: Moscow, Russia, 1980; English translation, revised from the 1977 Russian edition. [Google Scholar]
- Rogosin, S.; Mainardi, F. George William Scott Blair—The pioneer of factional calculus in rheology. Comm. Appl. Indust. Math. 2014, 6, e481. [Google Scholar]
- Tarasov, V. E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. (Trans. ASME) 1984, 51, 299–307. [Google Scholar]
- Koeller, R.C. A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 2010, 77, 031008:1–031008:9. [Google Scholar]
- Mainardi, F. An historical perspective on fractional calculus in linear Viscoelasticity. Fract. Calc. Appl. Anal. 2012, 15, pp. 712–717. E-print: http://arxiv.org/abs/1007.2959.
- Mainardi, F.; Gorenflo, R.; Vivoli, A. Renewal processes of Mittag- Leffler and Wright type. Fract. Calc. Appl. Anal. 2005, 8, pp. 7–38. E-print http://arxiv.org/abs/math/0701455.
f | ρ | σ | f | ||
---|---|---|---|---|---|
Eα | 1 | ||||
Eα,β | 1 | ||||
1 | |||||
Eα,m,l | The result is not known |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogosin, S. The Role of the Mittag-Leffler Function in Fractional Modeling. Mathematics 2015, 3, 368-381. https://doi.org/10.3390/math3020368
Rogosin S. The Role of the Mittag-Leffler Function in Fractional Modeling. Mathematics. 2015; 3(2):368-381. https://doi.org/10.3390/math3020368
Chicago/Turabian StyleRogosin, Sergei. 2015. "The Role of the Mittag-Leffler Function in Fractional Modeling" Mathematics 3, no. 2: 368-381. https://doi.org/10.3390/math3020368
APA StyleRogosin, S. (2015). The Role of the Mittag-Leffler Function in Fractional Modeling. Mathematics, 3(2), 368-381. https://doi.org/10.3390/math3020368