Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Measurement of Bank Efficiency
2.2. Data Source and Variable Selection
3. Results
3.1. Descriptive Statistics
3.2. The Overall Analysis of the Banking Industry (2012–2017)
3.3. The Year-by-Year Analysis of Banking Industry (2012–2017)
3.4. A Comparative Analysis of the Banks of Different Types of Ownership
4. Discussion
4.1. The Validity of the Efficiency Evaluation Model
4.2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Comprehensively Deepen the Reform of the Financial System. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2012&filename=ZGJR201223000 (accessed on 16 June 2018).
- The Report on the Work of the Government. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CCND&dbname=CCNDLAST2013&filename=RMRB201303190015 (accessed on 16 June 2018).
- Deepen the Reform of the Financial System. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2016&filename=ZGJR201522003 (accessed on 16 June 2018).
- Xi, J.P. Secure a Decisive Victory in Building a Moderately Prosperous Society in All Respects and Strive for the Great Success of Socialism with Chinese Characteristics for a New Era: Delivered at the 19th National Congress of the Communist Party of China; People’s Publishing House: Beijing, China, 2017. [Google Scholar]
- Xi, J.P. Jointly Shoulder Responsibility of Our Times, Promote Global Growth. Available online: http://www.xinhuanet.com/english/2017-01/18/c_135991184.htm (accessed on 16 June 2018).
- Issing, O. Some lessons from the financial market crisis. Int. Financ. 2009, 12, 431–444. [Google Scholar] [CrossRef]
- Zhou, X.C. The responses of financial policies to the financial crisis. J. Financ. Res. 2011, 1, 1–14. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2011&filename=JRYJ201101003 (accessed on 30 December 2017).
- Yellen, J.L. Macroprudential supervision and monetary policy in the post-crisis world. Bus. Econ. 2011, 46, 3–12. [Google Scholar] [CrossRef]
- Baker, A. The new political economy of the macroprudential ideational shift. New Political Econ. 2013, 18, 112–139. [Google Scholar] [CrossRef] [Green Version]
- Borio, C.; Drehmann, M. Towards an operational framework for financial stability: ‘Fuzzy’ measurement and its consequences. BIS Work. Pap. 2009, 284. [Google Scholar] [CrossRef]
- Zhang, X.H. The exploration of macroprudential policy in China. China Financ. 2017, 11, 23–25. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2017&filename=ZGJR201711012 (accessed on 30 December 2017).
- Xu, Z. Treating Correctly the Further Opening of the Financial Industry to the Outside World. Available online: http://www.xinhuanet.com/money/2018-03/29/c_129840060.htm (accessed on 16 June 2018).
- Xu, Z. Modernization of China’s Financial System and Governance System in the New Era. Econ. Res. J. 2018, 7, 4–20. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDTEMP&filename=JJYJ201807002 (accessed on 6 September 2018).
- Zhang, J.H. Realizing the positive interaction between finance and economy. China Financ. 2012, 7, 54–56. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2012&filename=ZGJR201207032 (accessed on 6 January 2017).
- Ariss, R.T. On the implications of market power in banking: Evidence from developing countries. J. Bank Financ. 2010, 34, 765–775. [Google Scholar] [CrossRef]
- Jiang, H.; Han, L. Does Income Diversification Benefit the Sustainable Development of Chinese Listed Banks? Analysis Based on Entropy and the Herfindahl–Hirschman Index. Entropy 2018, 20, 255. [Google Scholar] [CrossRef]
- Huang, T.-H.; Lin, C.-I.; Chen, K.-C. Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies. Pac. Basin Financ. J. 2017, 41, 93–110. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Fan, J.; Wang, X.; Wu, Z. Assessing the global productive efficiency of Chinese banks using the cross-efficiency interval and VIKOR. Emerg. Mark. Rev. 2018, 34, 77–86. [Google Scholar] [CrossRef]
- Sherman, H.D.; Gold, F. Bank branch operating efficiency: Evaluation with data envelopment analysis. J. Bank Financ. 1985, 9, 297–315. [Google Scholar] [CrossRef]
- Huang, X.; Wang, F.H. Efficiency difference of Chinese and German state-owned banks. J. World Econ. 2003, 2, 1–7. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2003&filename=SJJJ200302009 (accessed on 6 January 2018).
- Zhang, R.F. Factors affecting China’s banking stability and the correspondent stability strategy in the course of opening. Financ. Econ. 2007, 8, 1–7. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2007&filename=CJKX200708000 (accessed on 6 January 2018).
- Lee, P.; Park, Y.-J. Eco-efficiency evaluation considering environmental stringency. Sustainability 2017, 9, 661. [Google Scholar] [CrossRef]
- Zhang, J.H. The DEA-based research of the efficiency of Chinese state-owned commercial banks and the empirical analysis of the period 1997–2001. J. Financ. Res. 2003, 3, 11–25. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2003&filename=JRYJ200303002 (accessed on 6 January 2018).
- Wei, Q.L. Data envelopment analysis (DEA). Sci. Bull. 2000, 17, 1793–1808. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2000&filename=KXTB200017000 (accessed on 6 January 2018).
- Chen, Z.; Matousek, R.; Wanke, P. Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines. N. Am. J. Econ. Financ. 2018, 43, 71–86. [Google Scholar] [CrossRef]
- Zha, Y.; Liang, N.; Wu, M.; Bian, Y. Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega 2016, 60, 60–72. [Google Scholar] [CrossRef]
- Staub, R.B.; da Silva e Souza, G.; Tabak, B.M. Evolution of bank efficiency in Brazil: A DEA approach. Eur. J. Oper. Res. 2010, 202, 204–213. [Google Scholar] [CrossRef]
- LaPlante, A.E.; Paradi, J. Evaluation of bank branch growth potential using data envelopment analysis. Omega 2015, 52, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Chortareas, G.E.; Garza-García, J.G.; Girardone, C. Financial deepening and bank productivity in Latin America. Eur. J. Financ. 2011, 17, 811–827. [Google Scholar] [CrossRef]
- Liu, H.T. The measurement of Chinese commercial banks. Econ. Sci. 2004, 6, 48–58. [Google Scholar] [CrossRef]
- Pang, R.Z. Efficiency of Our Commercial Banks and Analysis of the Change in Productivity. Financ. Forum 2006, 5, 10–14. [Google Scholar] [CrossRef]
- Zhu, N.; Li, J.; Wu, Q.; Cheng, W.L. The analysis of the production efficiency of Chinese commercial banks and the total factor productivity change. Economist 2012, 9, 56–61. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. Manag. Sci. 1981, 27, 668–697. [Google Scholar] [CrossRef]
- Basso, A.; Funari, S. The role of fund size in the performance of mutual funds assessed with DEA models. Eur. J. Financ. 2017, 23, 457–473. [Google Scholar] [CrossRef]
- Allevi, E.; Basso, A.; Bonenti, F.; Oggioni, G.; Riccardi, R. Measuring the environmental performance of green SRI funds: A DEA approach. Energy Econ. 2018. [Google Scholar] [CrossRef]
- Farrel, M. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–290. Available online: https://www.jstor.org/stable/2343100 (accessed on 16 June 2018). [CrossRef]
- Visbal-Cadavid, D.; Martínez-Gómez, M.; Guijarro, F. Assessing the Efficiency of Public Universities through DEA. A Case Study. Sustainability 2017, 9, 1416. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Fukuyama, H. Technical and scale efficiency of Japanese commerical banks: A non-parametric approach. Appl. Econ. 1993, 25, 1101–1112. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trabajos de Estadística 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econom. J. Econom. Soc. 1982, 1393–1414. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Malmquist productivity indexes and Fisher ideal indexes. Econ. J. 1992, 102, 158–160. [Google Scholar] [CrossRef]
- Ray, S.C.; Desli, E. Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. Am. Econ. Rev. 1997, 87, 1033–1039. Available online: https://www.jstor.org/stable/2951340 (accessed on 6 January 2018).
- For the First Time, China’s Four Biggest Banks Topped the List of the Top 1000 World Banks. Available online: http://news.sina.com.cn/o/2018-07-03/doc-ihevauxi5526749.shtml (accessed on 16 June 2018).
- Bank of Ningbo Co., Ltd. Ranked 166th in the Top 1000 World Banks. Available online: http://finance.ifeng.com/a/20180704/16366136_0.shtml (accessed on 16 June 2018).
- Avkiran, N.K. Productivity analysis in the service sector with data envelopment analysis. SSRN Work. Pap. 2006. [Google Scholar] [CrossRef]
- Adusei, M. Modelling the efficiency of universal banks in Ghana. Quant. Financ. Lett. 2016, 4, 60–70. [Google Scholar] [CrossRef]
- Hwang, Y.-G.; Park, S.; Kim, D. Efficiency Analysis of Official Development Assistance Provided by Korea. Sustainability 2018, 10, 2697. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. CSUR 2009, 41, 15. [Google Scholar] [CrossRef]
Bank 1 | Name | Type 2 | Rank 3 |
---|---|---|---|
GSYH | Industrial and Commercial Bank of China Limited | A1 | 1 |
JSYH | China Construction Bank Corporation | A1 | 2 |
ZGYH | Bank of China Limited | A1 | 3 |
NYYH | Agricultural Bank of China Limited | A1 | 4 |
JTYH | Bank of Communications Co., Ltd. | A1 | 11 |
ZSYH | China Merchants Bank Co., Ltd. | A2 | 20 |
PFYH | Shanghai Pudong Development Bank Co., Ltd. | A2 | 25 |
XYYH | Industrial Bank Co., Ltd. | A2 | 26 |
ZXYH | China CITIC Bank Corporation Limited | A2 | 27 |
MSYH | China Minsheng Banking Corp., Ltd. | A2 | 30 |
GDYH | China Everbright Bank Company Limited Co., Ltd. | A2 | 39 |
PAYH | Ping An Bank Co., Ltd. | A2 | 57 |
BJYH | Bank of Beijing Co., Ltd. | A3 | 63 |
HXYH | Hua Xia Bank Co., Limited | A2 | 65 |
SHYH | Bank of Shanghai Co., Ltd. | A3 | 76 |
NJYH | Bank of Nanjing Co., Ltd. | A3 | 143 |
NBYH | Bank of Ningbo Co., Ltd. | A3 | 166 |
Statistical Indicators | Fixed Assets | Salaries of Employees | Operating Expenses | Net Profit | Operating Income |
---|---|---|---|---|---|
(Billion RMB) | (Billion RMB) | (Billion RMB) | (Billion RMB) | (Billion RMB) | |
Mean | 52.048 | 12.624 | 102.633 | 73.543 | 196.814 |
Min | 2.173 | 0.333 | 4.157 | 4.045 | 9.114 |
Median | 14.483 | 7.863 | 64.701 | 41.763 | 119.534 |
Max | 220.651 | 47.697 | 364.66 | 287.451 | 726.502 |
Std. Deviation 1 | 66.557 | 12.574 | 101.015 | 80.977 | 202.259 |
C.V. 2 | 1.279 | 0.996 | 0.984 | 1.101 | 1.028 |
ID | Firm | CTE | TC | CPE | CSE | TFPC |
---|---|---|---|---|---|---|
1 | BJYH | 0.994 | 0.861 | 1.000 | 0.994 | 0.856 |
2 | GSYH | 1.000 | 0.961 | 1.000 | 1.000 | 0.961 |
3 | GDYH | 1.001 | 0.966 | 1.003 | 0.999 | 0.967 |
4 | HXYH | 1.015 | 0.972 | 1.014 | 1.001 | 0.987 |
5 | JSYH | 1.009 | 0.968 | 1.013 | 0.996 | 0.976 |
6 | JTYH | 1.012 | 0.953 | 1.014 | 0.998 | 0.965 |
7 | MSYH | 0.990 | 0.959 | 0.985 | 1.005 | 0.949 |
8 | NJYH | 1.008 | 0.973 | 1.000 | 1.008 | 0.981 |
9 | NBYH | 1.011 | 0.966 | 1.002 | 1.009 | 0.977 |
10 | NYYH | 1.032 | 0.969 | 1.038 | 0.995 | 1.000 |
11 | PAYH | 1.032 | 0.977 | 1.000 | 1.032 | 1.009 |
12 | PFYH | 1.000 | 0.936 | 1.000 | 1.000 | 0.936 |
13 | SHYH | 1.020 | 0.973 | 1.012 | 1.008 | 0.992 |
14 | XYYH | 1.000 | 0.947 | 1.000 | 1.000 | 0.947 |
15 | ZSYH | 1.012 | 0.936 | 1.000 | 1.012 | 0.946 |
16 | ZGYH | 1.012 | 0.969 | 1.012 | 1.000 | 0.981 |
17 | ZXYH | 1.030 | 0.933 | 1.030 | 1.000 | 0.961 |
Mean | 1.010 | 0.954 | 1.007 | 1.003 | 0.964 | |
Std. Deviation | 0.013 | 0.028 | 0.013 | 0.009 | 0.034 |
Year | CTE | TC | CPE | CSE | TFPC |
---|---|---|---|---|---|
2013 | 1.013 | 1.019 | 1.013 | 1.000 | 1.032 |
2014 | 0.971 | 0.981 | 0.993 | 0.978 | 0.953 |
2015 | 1.050 | 0.863 | 1.025 | 1.025 | 0.907 |
2016 | 0.948 | 1.015 | 0.967 | 0.981 | 0.962 |
2017 | 1.074 | 0.901 | 1.040 | 1.033 | 0.968 |
Mean | 1.010 | 0.954 | 1.007 | 1.003 | 0.964 |
Std. Deviation | 0.053 | 0.070 | 0.028 | 0.025 | 0.045 |
Type | Bank | TE | PTE | SE | RTS |
---|---|---|---|---|---|
State-owned commercial banks | GSYH | 1.000 | 1.000 | 1.000 | c |
JSYH | 0.978 | 1.000 | 0.978 | d | |
JTYH | 0.934 | 0.956 | 0.977 | i | |
ZGYH | 0.929 | 0.930 | 0.999 | i | |
NYYH | 0.900 | 0.924 | 0.974 | d |
Type | Bank | TE | PTE | SE | RTS |
---|---|---|---|---|---|
Joint-stock commercial banks | PAYH | 1.000 | 1.000 | 1.000 | c |
PFYH | 1.000 | 1.000 | 1.000 | c | |
XYYH | 1.000 | 1.000 | 1.000 | c | |
ZSYH | 1.000 | 1.000 | 1.000 | c | |
ZXYH | 1.000 | 1.000 | 1.000 | c | |
GDYH | 0.925 | 0.941 | 0.983 | d | |
MSYH | 0.871 | 0.873 | 0.998 | i | |
HXYH | 0.848 | 0.857 | 0.989 | d |
Type | Bank | TE | PTE | SE | RTS |
---|---|---|---|---|---|
City commercial banks | SHYH | 1.000 | 1.000 | 1.000 | c |
NJYH | 0.974 | 1.000 | 0.974 | i | |
BJYH | 0.971 | 1.000 | 0.971 | i | |
NBYH | 0.889 | 1.000 | 0.889 | i |
Year | State-Owned | ||
---|---|---|---|
Commercial Banks | |||
TE | SE | PTE | |
2012 | 0.891 | 0.998 | 0.894 |
2013 | 0.896 | 0.970 | 0.927 |
2014 | 0.906 | 0.963 | 0.942 |
2015 | 0.936 | 0.969 | 0.967 |
2016 | 0.895 | 0.948 | 0.944 |
2017 | 0.948 | 0.986 | 0.962 |
Mean | 0.912 | 0.972 | 0.939 |
Year | Joint-Stock | ||
---|---|---|---|
Commercial Banks | |||
TE | SE | PTE | |
2012 | 0.910 | 0.968 | 0.941 |
2013 | 0.926 | 0.980 | 0.946 |
2014 | 0.889 | 0.967 | 0.920 |
2015 | 0.942 | 0.988 | 0.954 |
2016 | 0.903 | 0.989 | 0.912 |
2017 | 0.956 | 0.996 | 0.959 |
Mean | 0.921 | 0.981 | 0.939 |
Year | City | ||
---|---|---|---|
Commercial Banks | |||
TE | SE | PTE | |
2012 | 0.922 | 0.937 | 0.984 |
2013 | 0.932 | 0.948 | 0.982 |
2014 | 0.890 | 0.899 | 0.989 |
2015 | 0.929 | 0.944 | 0.983 |
2016 | 0.878 | 0.896 | 0.977 |
2017 | 0.959 | 0.959 | 1.000 |
Mean | 0.918 | 0.930 | 0.986 |
Statistical Indicators | Net Profit | Operating Income | Fixed Assets | Salaries of Employees | Operating Expenses |
---|---|---|---|---|---|
Net profit | 1.0000 | ||||
Operating income | 0.9934 *** (0.0000) | 1.0000 | |||
Fixed assets | 0.9444 *** (0.0000) | 0.9539 *** (0.0000) | 1.0000 | ||
Salaries of employees | 0.8974 *** (0.0000) | 0.9214 *** (0.0000) | 0.9039 *** (0.0000) | 1.0000 | |
Operating expenses | 0.9716 *** (0.0000) | 0.9914 *** (0.0000) | 0.9537 *** (0.0000) | 0.9324 *** (0.0000) | 1.0000 |
Statistical Indicators | Net Profit | Operating Income | Fixed Assets | Salaries of Employees | Operating Expenses |
---|---|---|---|---|---|
Q1 | 17.14 | 48.18 | 6.78 | 4.35 | 25.72 |
Q2 | 41.76 | 119.53 | 14.48 | 7.86 | 64.70 |
Q3 | 69.89 | 207.14 | 100.08 | 13.35 | 129.57 |
IQR | 52.75 | 158.96 | 93.30 | 8.99 | 103.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; He, Y. Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework. Mathematics 2018, 6, 184. https://doi.org/10.3390/math6100184
Jiang H, He Y. Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework. Mathematics. 2018; 6(10):184. https://doi.org/10.3390/math6100184
Chicago/Turabian StyleJiang, Huichen, and Yifan He. 2018. "Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework" Mathematics 6, no. 10: 184. https://doi.org/10.3390/math6100184
APA StyleJiang, H., & He, Y. (2018). Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework. Mathematics, 6(10), 184. https://doi.org/10.3390/math6100184