On the Riemann Function
Abstract
:1. Introduction
2. Copson’s Review
- Riemann’s original method [25], which was based on the fact that the Riemann function does not depend in any way on the curve carrying the Cauchy data. Solving the Cauchy problem by some other means for a special curve (e.g., a straight line) then yields the Riemann function by a comparison of the two solutions. Riemann only gave explicit formulae for the Riemann function in the two cases which interested him from gas dynamics. The most famous of these is the Euler-Poisson-Darboux equation (EPD)
- Hadamard [26] showed that the coefficient of the logarithmic term in his elementary solution is the Riemann function for the adjoint equation.
- For separable equations, Copson found that it is straightforward to construct an integral equation whose unique solution is the Riemann function.
- Mackie [24] constructed complex integral solutions of certain equations. An appropriate choice of contour results in the Riemann function.
- Titchmarsh [34] gave a direct solution for the Riemann function of the equation of damped waves by means of a complex Fourier integral.
2.1. Self Adjoint Riemann Functions
- , which has Riemann function
3. Methods not Included by Copson
3.1. The Telegrapher’s Equation
3.2. Successive Iterations and the Banach Fixed Point Principle
3.3. Olevskiĭ’s Addition Formula
4. Developments Since 1958
4.1. Lie Point Symmetries
4.2. Laplace Transform for a Klein-Gordon Equation with a Non-Constant Coefficient
4.3. The Multiplication Formula
4.4. Finite Groups and a Link to Appell’s
- ,
- ,
- .
4.5. Lie-Bäcklund Symmetries
- .
- .
- .
- .
5. New Riemann Functions
6. Conclusions
- Lie point symmetries.
- The method of successive approximations.
- The addition formula.
- Laplace transforms.
- The multiplication formula.
- Finite groups.
- Lie-Bäcklund symmetries.
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Hypergeometric Functions
References
- Solimeno, S. Riemann-Green’s Functions for Solving Electromagnetic Problems Exhibiting Rotational Symmetry in Media Moving with Superluminal Velocities. J. Math. Phys. 1975, 16, 218–223. [Google Scholar] [CrossRef]
- Iraniparast, N. Green-Riemann Functions for a Class of Hyperbolic Focal Point Problems. SIAM J. Math. Anal. 1989, 20, 408–414. [Google Scholar] [CrossRef]
- Asfar, O.R. Riemann-Green Function Solution of Transient Plane Waves in Lossy Media. IEEE Trans. Electromagn. Compat. 1990, 32, 228–231. [Google Scholar] [CrossRef]
- Coz, M.; Coudray, C. Existence of Generalized Translation Operators from the Agranovitch-Marchenko Transformation (Jost Solutions). J. Math. Phys. 1973, 14, 1574–1578. [Google Scholar] [CrossRef]
- Coz, M.; Coudray, C. The Riemann Solution and the Inverse Quantum Mechanical Problem. J. Math. Phys. 1976, 17, 888–893. [Google Scholar] [CrossRef]
- Coz, M. The Riemann Solution in the One-Dimensional Inverse Problem. J. Math. Anal. Appl. 1977, 61, 32–250. [Google Scholar] [CrossRef]
- Coz, M.; Rochus, P. Partial Differential Matrix Equations for the Inverse Problem of Scattering Theory. J. Math. Phys. 1976, 17, 894–899. [Google Scholar] [CrossRef]
- Coz, M.; Rochus, P. The Translation Kernel in the N-Dimensional Scattering Problem. J. Math. Phys. 1977, 18, 2223–2231. [Google Scholar] [CrossRef]
- Coz, M.; Rochus, P. Translation Kernels for Velocity Dependent Interactions. J. Math. Phys. 1977, 18, 2232–2240. [Google Scholar] [CrossRef]
- Coz, M.; Rochus, P. Extension of the Marchenko Equation to Non-Hermitian Differential Systems. Anna. Phys. 1980, 126, 460–499. [Google Scholar] [CrossRef]
- Gugushvili, H.I.; Mentkovsky, Y.L. Inverse Problem of the Theory of Charged Particle Scattering. Ukr. Phys. J. 1969, 13, 1252–1263. [Google Scholar]
- Gugushvili, H.I.; Mentkovsky, Y.L. The Inverse Problem of Scattering Theory and Riemann’s Method. Il Nuovo Cimento 1972, 10, 277–291. [Google Scholar] [CrossRef]
- Matsuno, Y. Reduction of Dispersionless Coupled Korteweg-de Vries Equations to the Euler-Darboux Equation. J. Math. Phys. 2001, 42, 1744–1760. [Google Scholar] [CrossRef]
- Popivanov, N.; Popov, T. Exact Behaviour of Singularities of Protter’s Problem for the 3-D Wave Equation. In Inclusion Methods for Nonlinear Problems; Herzberger, J., Ed.; Springer: New York, NY, USA, 2003; pp. 213–236. [Google Scholar]
- Popivanov, N.; Popov, T.; Scherer, R. Asymptotic Expansions of Singular Solutions for (3 + 1)-D Protter Problems. J. Math. Anal. Appl. 2007, 331, 1093–1112. [Google Scholar] [CrossRef]
- Popivanov, N.; Popov, T.; Scherer, R. Protter-Morawetz Multidimensional Problems. Proc. Steklov Inst. Math. 2012, 278, 179–198. [Google Scholar] [CrossRef]
- Dechevski, L.; Popivanov, N.; Popov, T. Exact Asymptotic Expansion of Singular Solutions for the (2 + 1)-D Protter Problem. Abstr. Appl. Anal. 2012. [Google Scholar] [CrossRef]
- Popivanov, N.; Popov, T.; Tesdall, A. Semi-Fredholm Solvability in the Framework of Singular Solutions for the (3 + 1)-D Protter-Morawetz Problem. Abstr. Appl. Anal. 2014. [Google Scholar] [CrossRef]
- Wright, O.C.; Forest, M.G.; McLaughlin, K.T.-R. On the Exact Solution of the Geometric Optics Approximation of the Defocusing Non-Linear Schrödinger Equation. Phys. Lett. A 1999, 257, 170–174. [Google Scholar] [CrossRef]
- Forest, M.G.; Rosenberg, C.J.; Wright, O.C. On the Exact Solution for Smooth Pulses of the Defocusing nonlinear Schrödinger Modulation Equations Prior to Breaking. Nonlinearity 2009, 9, 2287–2308. [Google Scholar] [CrossRef]
- Shiryaeva, E.V.; Zhukov, M.Y. Hodograph Method and Numerical Integration of Two Hyperbolic Quasilinear Equations. Part I. The Shallow Water Equations; Working Paper; Southern Federal University: Rostov-on-Don, Russia, 2014. [Google Scholar]
- Shiryaeva, E.V.; Zhukov, M.Y. Hodograph Method and Numerical Solution of the Two Hyperbolic Quasilinear Equations System. Part II. Zonal Electrophoresis Equations; Working Paper; Southern Federal University: Rostov-on-Don, Russia, 2014. [Google Scholar]
- Shiryaeva, E.V.; Zhukov, M.Y. Hodograph Method and Numerical Solution of the Two Hyperbolic Quasilinear Equations System. Part III. Two Beam Reduction of the Dense Soliton Gas Equations; Working Paper; Southern Federal University: Rostov-on-Don, Russia, 2014. [Google Scholar]
- Copson, E.T. On the Riemann-Green Function. Arch. Rat. Mech. Anal. 1958, 1, 324–348. [Google Scholar] [CrossRef]
- Riemann, B. Collected Works of Bernhard Riemann; Dover: New York, NY, USA, 1953; pp. 156–175. [Google Scholar]
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Dover: New York, NY, USA, 1952. [Google Scholar]
- Chaundy, T.W. Hypergeometric Partial Differential Equations (I). Q. J. Math. Oxf. Ser. 1935, 6, 288–303. [Google Scholar] [CrossRef]
- Chaundy, T.W. Hypergeometric Partial Differential Equations (II). Q. J. Math. Oxf. Ser. 1936, 7, 306–315. [Google Scholar] [CrossRef]
- Chaundy, T.W. Partial Differential Equations With Constant Coefficients (II). Q. J. Math. Oxf. Ser. 1937, 8, 280–302. [Google Scholar] [CrossRef]
- Chaundy, T.W. Linear Partial Differential Equations (I). Q. J. Math. Oxf. Ser. 1938, 9, 234–240. [Google Scholar] [CrossRef]
- Chaundy, T.W. Hypergeometric Partial Differential Equations (III). Q. J. Math. Oxf. Ser. 1939, 10, 219–240. [Google Scholar] [CrossRef]
- Chaundy, T.W. Linear Partial Differential Equations (II). Q. J. Math. Oxf. Ser. 1940, 11, 101–110. [Google Scholar] [CrossRef]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques, Polynomes D’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Titchmarsh, E.C. Theory of Fourier Integrals; Oxford University Press: London, UK, 1937; pp. 297–298. [Google Scholar]
- Lanckau, E. Die Riemannfunktion Selbstadjungierter Gleichungen. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 1979, 21, 535–540. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions I; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Henrici, P.A. Survey of I. N. Vekua’s Theory of Elliptic Partial Differential Equations with Analytic Coefficients. Z. Angew. Math. Phys. 1957, 8, 169–202. [Google Scholar] [CrossRef]
- Püngel, J. Zur Darstellung Von Riemannfunktionen Durch Integro Differentialoperatoren. Sitzungsberichte. Abt. 2. Methematik, Astronomie, Physik, Meteorologie Und Technik 1980, 189, 55–66. [Google Scholar]
- Püngel, J. Lineare Abbidungen Zwischen Lösungsmengen Partieller Differentialgleichungen Im Komplexen. Graz Mathematische-Statistiche Sektion; Forschungsgesellschaft Joanneum: Graz, Austria, 1978. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics II; Interscience Publishers: New York, NY, USA, 1962. [Google Scholar]
- Cohn, H. The Riemann function for Uxy + H(x + y)U = 0. Duke Math. J. 1947, 14, 297–304. [Google Scholar] [CrossRef]
- Olevskiĭ, M.N. On Riemann’s Function for the Differential Equation (∂2u/∂x2) − (∂2u/∂t2) + [ρ1(x) + ρ2(t)]u = 0. Dokl. Akad. Nauk SSSR 1952, 87, 337–340. [Google Scholar]
- Lie, S. On Integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals. Arch. Math. Bd VI Heft 1881, 3, 328–368. [Google Scholar]
- Bluman, G.W. Construction of Solutions to Partial Differential Equations by the Use of Transformation Groups. Ph.D. Thesis, California Institute Of Technology, Pasadena, CA, USA, 1967. [Google Scholar]
- Daggit, E.A. The Use of Infinitesimal Transformations in Predicting the Form of the Riemann (-Green) Function. J. Math. Anal. Appl. 1970, 29, 91–108. [Google Scholar] [CrossRef]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations, Volume 2, Applications in Engineering and Physical Sciences; CRC Press: Boca Raton, FL, USA, 1995; pp. 41–51. [Google Scholar]
- Iwasaki, K. Riemann Function of Harmonic Equation and Appell’s F4. SIAM J. Math. Anal. 1988, 19, 903–917. [Google Scholar] [CrossRef]
- Hille, E. Lectures on Ordinary Differential Equations; Addison Wesley: Reading, MA, USA, 1969. [Google Scholar]
- Vaz, P.T.; Deo, S.G. On a Class of Linear Hyperbolic Differential Equations. Indian J. Pure Appl. Math. 1987, 9, 801–809. [Google Scholar]
- Papadakis, J.S.; Wood, D.H. Addendum: “An Addition Formula for Riemann Functions”. J. Differ. Equ. 1978, 29, 474. [Google Scholar]
- Papadakis, J.S.; Wood, D.H. An Addition Formula for Riemann Functions. J. Differ. Equ. 1977, 24, 397–411. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1996. [Google Scholar]
- Kokinasidi, P.D. Construction of the Riemann Function for Some Hyperbolic Equations. Differ. Uravn. 1983, 19, 703–706. [Google Scholar]
- Johnpillai, I.K.; Mahomed, F.M. Goursat Problem for the Factorizable Hyperbolic Equation in two Independent Variables. Math. Comp. Appl. 2003, 8, 55–62. [Google Scholar] [CrossRef]
- Andrey, A.; Yevgeniya, K.; Anzhelika, V. Construction of the Solution of the Caushy’s Problem by the Riemann’s Method for a Hyperbolic Equation. Am. Res. J. Math. 2015, 1, 44–48. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Mackie, A.G. Green’s Functions and Riemann’s Method. Proc. Edinb. Math. Soc. 1964, 14, 293–302. [Google Scholar] [CrossRef]
- Wood, D.H. Simple Riemann Functions. Bull. Am. Math. Soc. 1976, 82, 737–739. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New Similarity Reductions of the Boussinesq Equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Geddes, R.L.; Mackie, A.G. Riemann Functions for Self-adjoint Equations. Appl. Anal. 1977, 7, 43–47. [Google Scholar] [CrossRef]
- Bluman, G.W. On Mapping Linear Partial Differential Equations to Constant Coefficient Equations. SIAM J. Appl. Math. 1983, 43, 1259–1273. [Google Scholar] [CrossRef]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982; pp. 105–117. [Google Scholar]
- Miller, W., Jr. Lie Theory and Special Functions; Academic: New York, NY, USA, 1968. [Google Scholar]
- Scott, E.J. Determination of the Riemann Function. Am. Math. Mon. 1973, 80, 907–909. [Google Scholar] [CrossRef]
- Wahlberg, C. Riemann’s Function for a Klein-Gordon Equation with a Non-Constant Coefficient. J. Phys. A Math. Gen. 1977, 10, 867–878. [Google Scholar] [CrossRef]
- Ince, E.L. Ordinary Differential Equations; Dover: New York, NY, USA, 1956; p. 466. [Google Scholar]
- Du, X.H. A Note on Olevskii’s Formula for Self-Adjoint Hyperbolic Equations of the Second Order. Kexue Tongbao 1981, 26, 869–873. [Google Scholar]
- Zeitsch, P.J. Symmetry Operators for Riemann’s Method. J. Math. Phys. 2004, 45, 2993–3000. [Google Scholar] [CrossRef]
- Zeitsch, P.J. Riemann Functions and the Group E(1, 1). J. Math. Phys. 2004, 45, 3001–3018. [Google Scholar] [CrossRef]
- Miller, W., Jr. Symmetry and Separation of Variables; Addison-Wesley: London, UK, 1977. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1965. [Google Scholar]
- Bauer, K.W. On a Class of Riemann Functions. Appl. Anal. 1982, 13, 109–126. [Google Scholar] [CrossRef]
- Bauer, K.W. On the Determination of Riemann Functions. Complex Var. Theory Appl. 1987, 8, 195–203. [Google Scholar] [CrossRef]
- Markett, C.; Püngell, J.; Wallner, H. Multiple Power Series Representations for Riemann Functions of Self-Adjoint Equations. Appl. Anal. 1990, 38, 179–199. [Google Scholar] [CrossRef]
- Vekua, I.N. New Methods for Solving Elliptic Equations; North Holland Publish. Co.: Amsterdam, The Netherlands, 1968. [Google Scholar]
- Lerner, M.E. Qualitative Properties of the Riemann Function. Differ. Equ. 1992, 27, 1495–1508. [Google Scholar]
- Wallner, H. Die Riemannfunktion der Differentialgleichung Wzζ+[z+φ′(ζ)]W = 0. Arch. Math. 1981, 37, 435–442. [Google Scholar] [CrossRef]
- Zhegalov, V.I.; Kotukhov, M.P. On Integral Equations for Riemann Function. Russ. Math. (Iz. VUZ) 1998, 42, 24–28. [Google Scholar]
- Zhegalov, V.I. On the three-dimensional Riemann Function. Sib. Math. J. 1998, 38, 929–934. [Google Scholar] [CrossRef]
- Koshcheeva, O.A. Construction of the Riemann Function for the Bianchi Equation in an n-Dimensional Space. Russ. Math. (Iz. VUZ) 2008, 52, 35–40. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeitsch, P.J. On the Riemann Function. Mathematics 2018, 6, 316. https://doi.org/10.3390/math6120316
Zeitsch PJ. On the Riemann Function. Mathematics. 2018; 6(12):316. https://doi.org/10.3390/math6120316
Chicago/Turabian StyleZeitsch, Peter J. 2018. "On the Riemann Function" Mathematics 6, no. 12: 316. https://doi.org/10.3390/math6120316
APA StyleZeitsch, P. J. (2018). On the Riemann Function. Mathematics, 6(12), 316. https://doi.org/10.3390/math6120316