A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, F.; Wu, S. Fejér and Hermite–Hadamard type inequalities for harmonically convex functions. J. Appl. Math. 2014, 2014, 386806. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Yazi, N.; Gozutok, U. On new inequalities of Hermite–Hadamard Fejér type inequalities for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 635. [Google Scholar] [CrossRef] [PubMed]
- İşcan, İ. Hermite Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- İşcan, İ.; Mehmet, K. Hermite–Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. Stud. Univ. Bbeş-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- İşcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Tomovski, Z.; Hiller, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler function. Integral Transforms Spec. Funct. 2011, 21, 797–814. [Google Scholar] [CrossRef]
- Salim, L.T.O.; Faraj, A.W. A Generalization of Mittaf-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag–Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.J. Integral and Series of Elementary Functions; Nauka: Moscow, Russia, 1981. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.M.; Abbas, G.; Farid, G.; Nazeer, W. A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results. Mathematics 2018, 6, 122. https://doi.org/10.3390/math6070122
Kang SM, Abbas G, Farid G, Nazeer W. A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results. Mathematics. 2018; 6(7):122. https://doi.org/10.3390/math6070122
Chicago/Turabian StyleKang, Shin Min, Ghulam Abbas, Ghulam Farid, and Waqas Nazeer. 2018. "A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results" Mathematics 6, no. 7: 122. https://doi.org/10.3390/math6070122
APA StyleKang, S. M., Abbas, G., Farid, G., & Nazeer, W. (2018). A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results. Mathematics, 6(7), 122. https://doi.org/10.3390/math6070122