Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables
Abstract
:1. Introduction
2. Integral Representations
3. A Connection with Generalized Hypergeometric Function
4. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Erdelyi, A. Higher Transcendental Functions; McGraw Hill Book Co.: New York, NY, USA, 1953. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Khan, M.A.; Abukhammash, G.S. On a generalizations of Appell’s functions of two variables. Pro Math. 2002, 31, 61–83. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer, Acedemic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall, (CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Choi, J.; Jang, D.S.; Srivastava, H.M. A generalization of the Hurwitz-Lerch Zeta function. Integral Transf. Spec. Funct. 2008, 19, 65–79. [Google Scholar]
- Jankov, D.; Pogany, T.K.; Saxena, R.K. An extended general Hurwitz-Lerch Zeta function as a Mathieu (a, λ)-series. Appl. Math. Lett. 2011, 24, 1473–1476. [Google Scholar] [CrossRef]
- Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Srivastava, H.M. A new family of the λ-generalized Hurwitz-Lerch Zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jankov, D.; Pogany, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz-Lerch Zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Luo, M.-J.; Raina, R.K. New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications. Turkish J. Anal. Number Theory 2013, 1, 26–35. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Pogany, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz-Lerch Zeta function. Integral Transf. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Pathan, M.A.; Daman, O. Further generalization of Hurwitz Zeta function. Math. Sci. Res. J. 2012, 16, 251–259. [Google Scholar]
- Choi, J.; Parmar, R. An extension of the generalized Hurwitz-Lerch Zeta function of two variable. Filomat 2017, 31, 91–96. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sooppy Nisar, K. Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. Mathematics 2019, 7, 48. https://doi.org/10.3390/math7010048
Sooppy Nisar K. Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. Mathematics. 2019; 7(1):48. https://doi.org/10.3390/math7010048
Chicago/Turabian StyleSooppy Nisar, Kottakkaran. 2019. "Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables" Mathematics 7, no. 1: 48. https://doi.org/10.3390/math7010048
APA StyleSooppy Nisar, K. (2019). Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. Mathematics, 7(1), 48. https://doi.org/10.3390/math7010048