Interpolative Ćirić-Reich-Rus Type Contractions via the Branciari Distance
Abstract
:1. Introduction and Preliminaries
2. Main Results
Author Contributions
Funding
Conflicts of Interest
References
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Kannan, R. Some results on fixed points. II. Am. Math. Mon. 1969, 76, 405–408. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef] [Green Version]
- Reich, E. Kannan’s fixed point theorem. Bollettino dell’Unione Matematica Italiana 1971, 4, 1–11. [Google Scholar]
- Karapınar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef]
- Karapınar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Francisco Roldan Lopez de Hierro, A. ω-interpolative Ciric-Reich-Rus type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef]
- Karapınar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 2000, 57, 31–37. [Google Scholar]
- Kadelburg, Z.; Radenović, S. Pata-type common fixed point results in b-metric and b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 944–954. [Google Scholar] [CrossRef]
- Karapınar, E. Discussion on (α, ψ)-contractions on generalized metric spaces. Abstr. Appl. Anal. 2014, 2014, 962784. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Samet, B. Fixed points for generalized (α, ψ)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 229. [Google Scholar] [CrossRef]
- Azam, A.; Arshad, M. Kannan fixed point theorem on generalized metric spaces. J. Nonlinear Sci. Appl. 2008, 1, 45–48. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Shatanawi, W. Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, 2012, 314279. [Google Scholar] [CrossRef]
- Shatanawi, W.; Al-Rawashdeh, A.; Aydi, H.; Nashine, H.K. On a fixed point for generalized contractions in generalized metric spaces. Abstr. Appl. Anal. 2012, 2012, 246085. [Google Scholar] [CrossRef]
- Lakzian, H.; Samet, B. Fixed point for (ψ, φ)-weakly contractive mappings in generalized metric spaces. Appl. Math. Lett. 2012, 25, 902–906. [Google Scholar] [CrossRef]
- Mlaiki, N.; Abodayeh, K.; Aydi, H.; Abdeljawad, T.; Abuloha, M. Rectangular Metric-Like Type Spaces Related Fixed Points. J. Math. 2018, 2018, 3581768. [Google Scholar] [CrossRef]
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60. [Google Scholar]
- Aydi, H.; Karapınar, E.; Zhang, D. On common fixed points in the context of Brianciari metric spaces. Results Math. 2019, 71, 73–92. [Google Scholar] [CrossRef]
- Roshan, J.R.; Hussain, N.; Parvaneh, V.; Kadelburg, Z. New fixed point results in rectangular b-metric spaces. Nonlinear Anal. 2016, 21, 614–634. [Google Scholar] [CrossRef]
- Suzuki, T. Generalized metric space do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 458098. [Google Scholar] [CrossRef]
- Kirk, W.A.; Shahzad, N. Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2013, 2013, 129. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydi, H.; Chen, C.-M.; Karapınar, E. Interpolative Ćirić-Reich-Rus Type Contractions via the Branciari Distance. Mathematics 2019, 7, 84. https://doi.org/10.3390/math7010084
Aydi H, Chen C-M, Karapınar E. Interpolative Ćirić-Reich-Rus Type Contractions via the Branciari Distance. Mathematics. 2019; 7(1):84. https://doi.org/10.3390/math7010084
Chicago/Turabian StyleAydi, Hassen, Chi-Ming Chen, and Erdal Karapınar. 2019. "Interpolative Ćirić-Reich-Rus Type Contractions via the Branciari Distance" Mathematics 7, no. 1: 84. https://doi.org/10.3390/math7010084
APA StyleAydi, H., Chen, C. -M., & Karapınar, E. (2019). Interpolative Ćirić-Reich-Rus Type Contractions via the Branciari Distance. Mathematics, 7(1), 84. https://doi.org/10.3390/math7010084