Convergence of Two Splitting Projection Algorithms in Hilbert Spaces
Abstract
:1. Introduction—Preliminaries
2. Main Results
3. Applications
- (R1)
- for each , is convex and lower semi-continuous;
- (R2)
- for each ,
- (R3)
- for each , ;
- (R4)
- for each , .
Author Contributions
Funding
Conflicts of Interest
References
- Browder, F.E. Fixed-point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 1965, 53, 1272–1276. [Google Scholar] [CrossRef]
- Korpelevich, G.M. An extragradient method for finding saddle points and for other problems. Èkonomika i Matematicheskie Metody 1976, 12, 747–756. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Martinet, B. Regularisation d’inequations variationnelles par approximations successives. Rev. Franc. Inform. Rech. Oper. 1970, 4, 154–159. [Google Scholar]
- Martinet, B. Determination approchée d’un point fixe d’une application pseudo-contractante. C. R. Acad. Sci. Paris Ser. A–B 1972, 274, 163–165. [Google Scholar]
- Rockfellar, R.T. Monotone operators and proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Augmented Lagrangians and applications of the proximal point algorithm in convex programmin. Math. Oper. Res. 1976, 1, 97–116. [Google Scholar] [CrossRef]
- Bin Dehaish, B.A.; Qin, X.; Latif, A.; Bakodah, H.O. Weak and strong convergence of algorithms for the sum of two accretive operators with applications. J. Nonlinear Convex Anal. 2015, 16, 1321–1336. [Google Scholar]
- Ansari, Q.H.; Babu, F.; Yao, J.C. Regularization of proximal point algorithms in Hadamard manifolds. J. Fixed Point Theory Appl. 2019, 21, 25. [Google Scholar] [CrossRef]
- Cho, S.Y.; Li, W.; Kang, S.M. Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013, 2013, 199. [Google Scholar] [CrossRef] [Green Version]
- Bin Dehaish, B.A.; Latif, A.; Bakodah, H.O.; Qin, X. A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces. J. Inequal. Appl. 2015, 2015, 51. [Google Scholar] [CrossRef] [Green Version]
- Spingarn, J.E. Applications of the method of partial inverses to convex programming decomposition. Math. Program. 1985, 32, 199–223. [Google Scholar] [CrossRef]
- Eckstein, J.; Bertsekas, D.P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef]
- Eckstein, J.; Ferris, M.C. Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. Informs J. Comput. 1998, 10, 218–235. [Google Scholar] [CrossRef]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 1979, 72, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Sibony, M. Méthodes itératives pour les équations et inéquations aux dérivées partielles nonlinéares de type monotone. Calcolo 1970, 7, 65–183. [Google Scholar] [CrossRef]
- Cho, S.Y. Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal. Comput. 2018, 8, 19–31. [Google Scholar]
- Tseng, P. A modified forward-backward splitting methods for maximal monotone mappings. SIAM. J Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kang, S.M. Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2012, 32, 1607–1618. [Google Scholar] [CrossRef]
- Chang, S.S.; Wen, C.F.; Yao, J.C. Zero point problem of accretive operators in Banach spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 105–118. [Google Scholar] [CrossRef]
- Chang, S.S.; Wen, C.F.; Yao, J.C. Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 2018, 67, 1183–1196. [Google Scholar] [CrossRef]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y. Generalized mixed equilibrium and fixed point problems in a Banach space. J. Nonlinear Sci. Appl. 2016, 9, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Kang, S.M. Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24, 224–228. [Google Scholar] [CrossRef]
- Takahahsi, W.; Yao, J.C. The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2019, 20, 173–195. [Google Scholar]
- Takahashi, W.; Wen, C.F.; Yao, J.C. The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 2018, 19, 407–419. [Google Scholar] [CrossRef]
- Liu, L.; Qin, X.; Agarwal, R.P. Iterative methods for fixed points and zero points of nonlinear mappings with applications. Optimization 2019. [Google Scholar] [CrossRef]
- Ceng, L.C.; Ansari, Q.H.; Yao, J.C. Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 2011, 74, 5286–5302. [Google Scholar] [CrossRef]
- Zhao, J.; Jia, Y.; Zhang, H. General alternative regularization methods for split equality common fixed-point problem. Optimization 2018, 67, 619–635. [Google Scholar] [CrossRef]
- He, S.; Wu, T.; Gibali, A.; Dong, Q. Totally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level sets. Optimization 2018, 67, 1487–1504. [Google Scholar] [CrossRef]
- Husain, S.; Singh, N. A hybrid iterative algorithm for a split mixed equilibrium problem and a hierarchical fixed point problem. Appl. Set-Valued Anal. Optim. 2019, 1, 149–169. [Google Scholar]
- Qin, X.; Yao, J.C. A viscosity iterative method for a split feasibility problem. J. Nonlinear Convex Anal. 2019, 20, 1497–1506. [Google Scholar]
- Opial, Z. Weak convergence of sequence of successive approximations for non-expansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Schu, J. Weak and strong convergence of fixed points of asymptotically non-expansive mappings. Bull. Austral. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef]
- Fan, K. A minimax inequality and applications. In Inequality III; Shisha, O., Ed.; Academic Press: New York, NY, USA, 1972; pp. 103–113. [Google Scholar]
- Blum, E.; Oettli, W. From optimization and variational inequalities to equilibriums problems. Math. Stud. 1994, 63, 123–145. [Google Scholar]
- Combettes, P.L.; Hirstoaga, S.A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6, 117–136. [Google Scholar]
- Takahashi, S.; Takahashi, W.; Toyoda, M. Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 2010, 147, 27–41. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutbi, M.A.; Latif, A.; Qin, X. Convergence of Two Splitting Projection Algorithms in Hilbert Spaces. Mathematics 2019, 7, 922. https://doi.org/10.3390/math7100922
Kutbi MA, Latif A, Qin X. Convergence of Two Splitting Projection Algorithms in Hilbert Spaces. Mathematics. 2019; 7(10):922. https://doi.org/10.3390/math7100922
Chicago/Turabian StyleKutbi, Marwan A., Abdul Latif, and Xiaolong Qin. 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces" Mathematics 7, no. 10: 922. https://doi.org/10.3390/math7100922
APA StyleKutbi, M. A., Latif, A., & Qin, X. (2019). Convergence of Two Splitting Projection Algorithms in Hilbert Spaces. Mathematics, 7(10), 922. https://doi.org/10.3390/math7100922