Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Existence and Boundedness Results
3.2. Global Asymptotic Stability
3.3. Global Mittag–Leffler Stability
4. An Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pujo-Menjouet, L. Blood cell dynamics: Half of a century of modelling. Math. Model. Nat. Phenom. 2016, 11, 92–115. [Google Scholar] [CrossRef]
- Wazewska–Czyzewska, M.; Lasota, A. Mathematical problems of the dynamics of red blood cell population. Math. Stos. 1976, 6, 23–40. (In Polish) [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations. With Applications, 1st ed.; Oxford University Press: London, UK, 1991; ISBN 0750301422, 9780750301428. [Google Scholar]
- Kiskinov, H.; Zahariev, A.; Zlatev, S. Permanence of the positive solutions of the generalised haematopoiesis Mackey-Glass model. C. R. Acad. Bulgare Sci. 2014, 67, 745–752. [Google Scholar]
- Kulenovic, M.R.S.; Ladas, G.; Sficas, Y.G. Global attractivity in population dynamics. Comput. Math. Appl. 1989, 18, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Lasota, A.; Loskot, K.; Mackey, M.C. Stability properties of proliferatively coupled cell replication models. Acta Biotheor. 1991, 39, 1–14. [Google Scholar] [CrossRef]
- Lasota, A.; Mackey, M.C. Cell division and the stability of cellular replication. J. Math. Biol. 1999, 38, 241–261. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, A.; Yan, J. Existence and global attractivity of unique positive periodic solution for a Lasota–Wazewska model. Nonlinear Anal. 2006, 64, 1737–1746. [Google Scholar] [CrossRef]
- Chérif, F.; Miraoui, M. New results for a Lasota–Wazewska model. Int. J. Biomath. 2019, 12, 1950019. [Google Scholar] [CrossRef]
- Duan, L.; Huang, L.; Chen, Y. Global exponential stability of periodic solutions to a delay Lasota–Wazewska model with discontinuous harvesting. Proc. Am. Math. Soc. 2016, 144, 561–573. [Google Scholar] [CrossRef]
- Rihani, S.; Kessab, A.; Chérif, F. Pseudo-almost periodic solutions for a Lasota–Wazewska model. Electron. J. Differ. Equ. 2016, 2016, 1–17. [Google Scholar]
- Shao, J. Pseudo-almost periodic solutions for a Lasota–Wazewska model with anoscillating death rate. Appl. Math. Lett. 2015, 43, 90–95. [Google Scholar] [CrossRef]
- Xiao, S. Delay effect in the Lasota–Wazewska modelwith multiple time-varying delays. Int. J. Biomath. 2018, 11, 1850013. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive Differential Equations and Inclusions; Hindawi Publishing Corporation: New York, NY, USA, 2006. [Google Scholar]
- Kiskinov, H.; Zahariev, A. Nonlinear impulsive differential equations with weighted exponential or ordinary dichotomous linear part in a Banach space. Int. J. Differ. Equ. 2015, 748607. [Google Scholar] [CrossRef]
- Li, X.; Bohner, M. An impulsive delay differential inequality and applications. Comput. Math. Appl. 2012, 64, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Bohner, M.; Wang, C.K. Impulsive differential equations: Periodic solutions and applications. Autom. J. IFAC 2015, 52, 173–178. [Google Scholar] [CrossRef]
- Li, X.; Ho, D.W.C.; Cao, J. Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica 2019, 99, 361–368. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Huang, T. Persistence of delayed cooperative models: Impulsive control method. Appl. Math. Comput. 2019, 342, 130–146. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-28060-8, 978-3-319-28061-5. [Google Scholar]
- Liu, X.; Takeuchi, Y. Periodicity and global dynamics of an impulsive delay Lasota–Wazewska model. J. Math. Anal. Appl. 2007, 327, 326–341. [Google Scholar] [CrossRef]
- Stamov, G.T. On the existence of almost periodic solutions for the impulsive Lasota–Wazewska model. Appl. Math. Lett. 2009, 22, 516–520. [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Niu, P. Periodic solution and almost periodic solution of impulsive Lasota–Wazewska model with multiple time-varying delays. Comput. Math. Appl. 2012, 64, 2383–2394. [Google Scholar] [CrossRef]
- Yan, J. Existence and global attractivity of positive periodic solution for an impulsive Lasota–Wazewska model. J. Math. Anal. Appl. 2003, 279, 111–120. [Google Scholar] [CrossRef]
- Yao, Z. Uniqueness and exponential stability of almost periodic positive solution for Lasota–Wazewska model with impulse and infinite delay. Math. Methods Appl. Sci. 2015, 38, 677–684. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Impulsive functional differential equations with variable times. Comput. Math. Appl. 2004, 47, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Graef, J.R.; Ouahab, A. Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2009, 16, 27–40. [Google Scholar]
- Song, Q.; Yang, X.; Li, C.; Huang, T.; Chen, X. Stability analysis of nonlinear fractional-order systems with variable-time impulses. J. Franklin Inst. 2017, 354, 2959–2978. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; ISBN 0444518320, 9780444518323. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering, 1st ed.; Academic Press: San Diego, CA, USA, 1999; ISBN 9780125588409, 9780080531984. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus. Models and Numerical Methods, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2016; ISBN 9813140038, 978-9813140035. [Google Scholar]
- Bohner, M.; Rahman, G.; Mubeen, S.; Nisar, K.S. A further extension of the extended Riemann-Liouville fractional derivative operator. Turk. J. Math. 2018, 42, 2631–2642. [Google Scholar] [CrossRef]
- Boyadzhiev, D.; Kiskinov, H.; Zahariev, A. Integral representation of solutions of fractional system with distributed delays. Integral Transforms Spec. Funct. 2018, 29, 725–744. [Google Scholar] [CrossRef]
- Skovranek, T.; Podlubny, I.; Petráš, I. Modeling of the national economics instate-space: A fractional calculus approach. Econ. Model. 2012, 29, 1322–1327. [Google Scholar] [CrossRef]
- Veselinova, M.; Kiskinov, H.; Zahariev, A. Stability analysis of neutral linear fractional system with distributed delays. Filomat 2016, 30, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.; Stamova, I. Impulsive fractional-order neural networks with time-varying delays: Almost periodic solutions. Neural Comput. Appl. 2017, 28, 3307–3316. [Google Scholar] [CrossRef]
- Stamova, I.; Stamov, G. Mittag–Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Wang, J.R.; Fečkan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 2011, 8, 345–361. [Google Scholar] [Green Version]
- Zhang, X.; Niu, P.; Ma, Y.; Wei, Y.; Li, G. Global Mittag–Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Netw. 2017, 94, 67–75. [Google Scholar] [CrossRef]
- Abbas, S.; Banerjee, M.; Momani, S. Dynamical analysis of fractional-order modified logistic model. Comput. Math. Appl. 2011, 62, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Gupta, P.K. A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 2011, 277, 1–6. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. On the fractional-order logistic equation. Appl. Math. Lett. 2007, 20, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.; Stamova, I. Modelling and almost periodic processes in impulsive Lasota–Wazewska equations of fractional order with time-varying delays. Quaest. Math. 2017, 40, 1041–1057. [Google Scholar] [CrossRef]
- Akhmet, M.U. Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 2007, 66, 367–383. [Google Scholar] [CrossRef] [Green Version]
- Bernfeld, S.R.; Corduneanu, C.; Ignatyev, A.O. On the stability of invariant sets of functional differential equations. Nonlinear Anal. 2003, 55, 641–656. [Google Scholar] [CrossRef]
- Smale, S. Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Norm. Super. Pisa 1963, 3, 97–116. [Google Scholar]
- Stamov, G. Lyapunov’s functions and existence of integral manifolds for impulsive differential systems with time-varying delay. Methods Appl. Anal. 2009, 16, 291–298. [Google Scholar]
- Blythe, S.P.; Nisbet, R.M.; Gurney, W.S.C. Instability and complex dynamic behaviour in population models with long time delays. Theor. Popul. Biol. 1982, 22, 147–176. [Google Scholar] [CrossRef]
- Arino, O.; Kimmel, M. Stability analysis of models of cell production systems. Mathematical models in medicine: Diseases and epidemics. Part 2. Math. Model. 1986, 7, 1269–1300. [Google Scholar] [CrossRef]
- Johnston, L. Non-Hodgkin’s Lymphomas: Making Sense of Diagnosis, Treatment, and Options, 1st ed.; O’Reilly & Associates, Inc.: Boston, MA, USA, 1999; ISBN 9781565924444. [Google Scholar]
- Pujo-Menjouet, L.; Bernard, S.; Mackey, M.C. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Syst. 2005, 4, 312–332. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef]
- Liu, X.; Ballinger, G. Boundedness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal. 2003, 53, 1041–1062. [Google Scholar] [CrossRef]
- Luo, Z.; Shen, J. Stability and boundedness for impulsive functional differential equations with infinite delays. Nonlinear Anal. 2001, 46, 475–493. [Google Scholar] [CrossRef]
- Stamova, I.M. Boundedness of impulsive functional differential equations with variable impulsive perturbations. Bull. Aust. Math. Soc. 2008, 77, 331–345. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J. Boundedness of the solutions of impulsive differential systems with time-varying delay. Appl. Math. Comput. 2004, 154, 279–288. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamov, G.; Stamova, I. Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds. Mathematics 2019, 7, 1025. https://doi.org/10.3390/math7111025
Stamov G, Stamova I. Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds. Mathematics. 2019; 7(11):1025. https://doi.org/10.3390/math7111025
Chicago/Turabian StyleStamov, Gani, and Ivanka Stamova. 2019. "Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds" Mathematics 7, no. 11: 1025. https://doi.org/10.3390/math7111025
APA StyleStamov, G., & Stamova, I. (2019). Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds. Mathematics, 7(11), 1025. https://doi.org/10.3390/math7111025