Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses
Abstract
:1. Introduction
2. Basic Definitions and Preliminaries
- For each the function is of class and
- (i)
- for each ,
- (ii)
- for all and for each ,
- For each , if , then , the map is of class and
- (i)
- ,
- (ii)
- (iii)
- .
- For all , if , then . Moreover, there exist , and
- (i)
- ,
- (ii)
- ,
and for all the function is continuous in
- is measurable for each
- is continuous for almost each
- W is pre-compact if and only if ,
- when
- ,
- for any ,
- .
3. Existence Results
- There exist a pair of constants and , such that
- There exists a constant such that:
- is of Carathéodory type and satisfies:
- There exist , and a continuous nondecreasing function such that:
- There exist integrable functions : such that:
- is a continuous function that satisfies:
- There exist , and a continuous nondecreasing function such that:
- There exists constant such that
- The functions are continuous, and they satisfy the following conditions:
- there exist positive constants such that
- there exist positive constants such that
- The functions are continuous, and satisfy the following conditions:
- There exist constants such that
- There exists constants such that
4. An Example
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aviles, P.; Sandefur, J. Nolinear second order equations wtih applications to partial differential equations. J. Differ. Equ. 1985, 58, 404–427. [Google Scholar] [CrossRef]
- Azodi, H.D.; Yaghouti, M.R. Bernoulli polynomials collocation for weakly singular Volterra integro-differential equations of fractional order. Filomat 2018, 32, 3623–3635. [Google Scholar] [CrossRef]
- Bloom, F. Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory. J. Math. Anal. Appl. 1980, 73, 524–542. [Google Scholar] [CrossRef]
- Forbes, L.K.; Crozier, S.; Doddrell, D.M. Calculating current densities and fields produced by shielded magnetic resonance imaging probes. SIAM J. Appl. Math. 1997, 57, 401–425. [Google Scholar]
- Keskin, B. Reconstruction of the Volterra-type integro-differential operator from nodal points. Bound. Value Probl. 2018, 2018. [Google Scholar] [CrossRef]
- Kostić, M. Weyl-almost periodic solutions and asymptotically Weyl-almost periodic solutions of abstract Volterra integro-differential equations. Banach J. Math. Anal. 2019, 13, 64–90. [Google Scholar] [CrossRef]
- Ren, Y.; Qin, Y.; Sakthivel, R. Existence results for fractional order semilinear integro-differential evolution equations with infinite delay. Integral Equ. Oper. Theory 2010, 67, 33–49. [Google Scholar] [CrossRef]
- Wu, J. Theory and Application of Partial Functional Differential Equations; Springer: New York, NY, USA, 1996. [Google Scholar]
- Abbas, S.; Benchohra, M. Advanced Functional Evolution Equations and Inclusions; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Balachandran, K.; Park, D.G.; Anthoni, S.M. Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations. Comput. Math. Appl. 2003, 46, 1313–1324. [Google Scholar] [CrossRef]
- Benchohra, M.; Ntouyas, S.K. Existence of mild solutions on noncompact intervals to second order initial value problems for a class of differential inclusions with nonlocal conditions. Comput. Math. Appl. 2000, 39, 11–18. [Google Scholar] [CrossRef]
- Fattorini, H.O. Second Order Linear Differential Equations in Banach Spaces; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 1985; Volume 108. [Google Scholar]
- Mönch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 4, 985–999. [Google Scholar] [CrossRef]
- Travis, C.C.; Webb, G.F. Second order differential equations in Banach spaces. In Proceedings of the International Symposium on Nonlinear Equations in Abstract Spaces, Arlington, TX, USA, 8–10 June 1977; Academic Press: New York, NY, USA, 1978; pp. 331–361. [Google Scholar]
- Kozak, M. A fundamental solution of a second-order differential equation in a Banach space. Univ. Iagel. Acta Math. 1995, 32, 275–289. [Google Scholar]
- Batty, C.J.K.; Chill, R.; Srivastava, S. Maximal regularity for second order non-autonomous Cauchy problems. Studia Math. 2008, 189, 205–223. [Google Scholar] [CrossRef]
- Benchohra, M.; Rezoug, N.; Zhou, Y. Semilinear mixed type integro-differential evolution equations via Kuratowski measure of noncompactness. Z. Anal. Anwend. 2019, 38, 143–156. [Google Scholar] [CrossRef]
- Cardinali, T.; Gentili, S. An existence theorem for a non-autonomous second order nonlocal multivalued problem. Stud. Univ. Babe-Bolyai Math. 2017, 6291, 101–117. [Google Scholar] [CrossRef]
- Faraci, F.; Iannizzotto, A. A multiplicity theorem for a perturbed second-order non-autonomous system. Proc. Edinb. Math. Soc. 2006, 49, 267–275. [Google Scholar] [CrossRef]
- Henríquez, H.; Poblete, V.; Pozo, J. Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 2014, 412, 1064–1083. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Vijayakumar, V.; Murugesu, R. Approximate controllability of second-order evolution differential inclusions in Hilbert spaces. Mediterr. J. Math. 2016, 13, 3433–3454. [Google Scholar] [CrossRef]
- Winiarska, T. Evolution equations of second order with operator dependent on t. Sel. Probl. Math. Cracow Univ. Tech. 1995, 6, 299–314. [Google Scholar]
- Hernández, E.; O’Regan, D. On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef]
- Fečkan, M.; Wang, J. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015, 46, 915–933. [Google Scholar]
- Abbas, S.; Benchohra, M.; Darwish, M. Some existence and stability results for abstract fractional differential inclusions with not instantaneous impulses. Math. Rep. (Bucuresti) 2017, 19, 245–262. [Google Scholar]
- Anguraj, A.; Kanjanadevi, S. Existence results for fractional non-instantaneous impulsive integro-differential equations with nonlocal conditions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2016, 23, 429–445. [Google Scholar]
- Banas, J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Springer: Singapore, 2017. [Google Scholar]
- Benchohra, M.; Litimein, S. Existence results for a new class of fractional integro-differential equations with state dependent delay. Mem. Differ. Equ. Math. Phys. 2018, 74, 27–38. [Google Scholar]
- Fečkan, M.; Wang, J.; Zhou, Y. Periodic solutions for nonlinear evolution equations with non-instantaneous impulses. Nonauton. Dyn. Syst. 2014, 1, 93–101. [Google Scholar]
- Ganga, R.; Jaydev, D. Existence result of fractional functional integro-differential equation with not instantaneous impulse. Int. J. Adv. Appl. Math. Mech. 2014, 1, 11–21. [Google Scholar]
- Muslim, M.; Kumar, A. Controllability of fractional differential equation of order α ∈ (1,2] with non-instantaneous impulses. Asian J. Control 2018, 20, 935–942. [Google Scholar] [CrossRef]
- Gautam, G.; Dabas, J. Mild solution for nonlocal fractional functional differential equation with not instantaneous impulse. Int. J. Nonlinear Sci. 2016, 21, 151–160. [Google Scholar]
- Saadati, R.; Pourhadi, E.; Samet, B. On the -mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness. Bound. Value Probl. 2019, 2019. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Lin, Z. On a new class of impulsive fractional differential equations. Appl. Math. Comput. 2014, 242, 649–657. [Google Scholar] [CrossRef]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics 60; Dekker: New York, NY, USA, 1980. [Google Scholar]
- Li, K.; Peng, J.; Gao, J. Nonlocal fractional semilinear differential equations in separable Banach spaces. Electron. J. Diff. Eqns. 2013, 2013, 1–7. [Google Scholar]
- Aissani, K.; Benchohra, M. Semilinear fractional order integro-differential equations with infinite delay in Banach spaces. Arch. Math. (Brno) 2013, 49, 105–117. [Google Scholar] [CrossRef]
- Akhmerov, R.R.; Kamenskii, M.I.; Patapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measures of Noncompactness an Condensing Operators; Birkhauser Verlag: Basel, Switzerland, 1992. [Google Scholar]
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Chen, P.; Li, Y. Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 2013, 63, 731–744. [Google Scholar] [CrossRef]
- Heinz, H.P. On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions. Nonlinear Anal. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Agarwal, R.; Meehan, M.; O’Regan, D. Fixed point theory and applications. In Cambridge Tracts in Mathematics; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Henríquez, H. Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear Anal. 2011, 74, 3333–3352. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchohra, M.; Rezoug, N.; Samet, B.; Zhou, Y. Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses. Mathematics 2019, 7, 1134. https://doi.org/10.3390/math7121134
Benchohra M, Rezoug N, Samet B, Zhou Y. Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses. Mathematics. 2019; 7(12):1134. https://doi.org/10.3390/math7121134
Chicago/Turabian StyleBenchohra, Mouffak, Noreddine Rezoug, Bessem Samet, and Yong Zhou. 2019. "Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses" Mathematics 7, no. 12: 1134. https://doi.org/10.3390/math7121134
APA StyleBenchohra, M., Rezoug, N., Samet, B., & Zhou, Y. (2019). Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses. Mathematics, 7(12), 1134. https://doi.org/10.3390/math7121134