Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators
Abstract
:1. Introduction
- (i)
- , the solution set of (1), is nonempty;
- (ii)
- f is pseudomonotone on H, i.e.,
- (iii)
- f is -Lipschitz continuous on H (for some ), i.e.,
2. Preliminaries
- denotes the weak convergence of to .
- stands for the strong convergence of to .
- means the set of fixed points of T.
- .
- (i)
- is a closed convex subset of C;
- (ii)
- T is demi-closed, i.e., and imply that .
3. Main Results
Algorithm 1: Iterative procedures for VI and FP. |
Let be a fixed point. Let , and be three real number sequences in . |
Let , , and be four constants. |
Step 1. Let be an initial value. Set . |
Step 2. Assume that the sequence has been constructed and then calculate . |
Step 3. Case 1. If , then calculate the sequence by the following manner where and satisfies and consequently, calculate the sequences , and by the following rule Case 2. If , then calculate the sequence via the following form |
Step 4. Set and return to Step 2. |
- (C1):
- and ;
- (C2):
- .
Algorithm 2: Iterative procedures for VI. |
Step 1. Fixed four constants , , and . Let be an initial value. Set . |
Step 2. Assume that the sequence has been constructed and then calculate . If , then stop. Otherwise, continuously proceed the following steps. |
Step 3. Calculate where and satisfies |
Step 4. Let be a fixed point. Let be a real number sequence in . Compute the sequence via the following form |
Step 5. Set and return to Step 2. |
Algorithm 3: Iterative procedures for FP. |
Step 1. Let be an initial value. Set . |
Step 2. Assume that the sequence has been constructed. Let be a fixed point. Let , and be three real number sequences in . Compute the sequences and via the following iterations |
4. Applications
- (i)
- T is -Lipschitz;
- (ii)
- is demi-closed at 0.
- (C1):
- and ;
- (C2):
- where .
Author Contributions
Funding
Conflicts of Interest
References
- Bello Cruz, J.-Y.; Iusem, A.-N. A strongly convergent direct method for monotone variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 2009, 30, 23–36. [Google Scholar] [CrossRef]
- Bello Cruz, J.-Y.; Iusem, A.-N. Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 2010, 46, 247–263. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.-C. Iterative algorithms for generalized variational inequalities. UPB Sci. Bull. Ser. A 2019, 81, 3–16. [Google Scholar]
- Anh, P.K.; Vinh, N.T. Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators. Numer. Algorithms 2019, 81, 983–1001. [Google Scholar] [CrossRef]
- Migorski, S.; Fang, C.J.; Zeng, S.D. A new modified subgradient extragradient method for solving variational inequalities. Appl. Anal. 2019. [Google Scholar] [CrossRef]
- Malitsky, Y. Proximal extrapolated gradient methods for variational inequalities. Optim. Meth. Softw. 2018, 33, 140–164. [Google Scholar] [CrossRef] [Green Version]
- Zegeye, H.; Shahzad, N.; Yao, Y. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces. Optimization 2015, 64, 453–471. [Google Scholar] [CrossRef]
- Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions. Fixed Point Theory 2019, 20, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhu, Z.; Yao, Y.; Liu, Q. Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities. Optimization 2019, 68, 2293–2312. [Google Scholar] [CrossRef]
- Thakur, B.S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.P.; Ng, K.F.; Li, C.; Yao, J.C. Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 2018, 78, 613–641. [Google Scholar] [CrossRef]
- Solodov, M.-V.; Tseng, P. Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 1996, 34, 1814–1830. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.W. Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 2019, 80, 741–752. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.W. A modified projected gradient method for monotone variational inequalities. J. Optim. Theory Appl. 2018, 179, 197–211. [Google Scholar] [CrossRef]
- Zhao, X.P.; Yao, J.C.; Yao, Y. A proximal algorithm for solving split monotone variational inclusions. UPB Sci. Bull. Ser. A 2020, in press. [Google Scholar]
- Cottle, R.W.; Yao, J.C. Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 1992, 75, 281–295. [Google Scholar] [CrossRef]
- He, B.-S.; Yang, Z.-H.; Yuan, X.-M. An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 2004, 300, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Iiduka, H.; Takahashi, W. Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl. 2008, 339, 668–679. [Google Scholar] [CrossRef]
- Korpelevich, G.-M. An extragradient method for finding saddle points and for other problems. Ekon. Matorsz. Metod. 1976, 12, 747–756. [Google Scholar]
- Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
- Hieu, D.V.; Muu, L.D.; Quy, P.K.; Vy, L.V. Explicit extragradient-like method with regularization for variational inequalities. Results Math. 2019, 74, UNSP 137. [Google Scholar]
- Hieu, D.V.; Anh, P.K.; Muu, L.D. Modified extragradient-like algorithms with new stepsizes for variational inequalities. Comput. Optim. Appl. 2019, 73, 913–932. [Google Scholar] [CrossRef]
- Thong, D.V.; Gibali, A. Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 2019, 21, UNSP 20. [Google Scholar] [CrossRef]
- Malitsky, Y.V. Projected reflected gradient method for variational inequalities. SIAM J. Optim. 2015, 25, 502–520. [Google Scholar] [CrossRef] [Green Version]
- Mainge, P.E.; Gobinddass, M.L. Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 2016, 171, 146–168. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Sintunavarat, W.; Pitea, A. On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 2016, 9, 2553–2562. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Hybrid viscosity extragradient method for systems of variational inequalities, fixed Points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 2018, 19, 487–502. [Google Scholar] [CrossRef]
- Dadashi, V.; Postolache, M. Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators. Arab. J. Math. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Postolache, M.; Wen, C.F.; Yao, Y. Variational inequalities approaches to minimization problems with constraints of generalized mixed equilibria and variational inclusions. Mathematics 2019, 7, 270. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpath. J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.-C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics 2019, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Thakur, D.; Thakur, B.S.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.P.; Sahu, D.R.; Wen, C.F. Iterative methods for system of variational inclusions involving accretive operators and applications. Fixed Point Theory 2018, 19, 801–822. [Google Scholar] [CrossRef]
- Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
- Chidume, C.E.; Abbas, M.; Ali, B. Convergence of the Mann iteration algorithm for a class of pseudocontractive mappings. Appl. Math. Comput. 2007, 194, 1–6. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Kang, S.M. Strong convergence of approximated iterations for asymptotically pseudocontractive mappings. Fixed Point Theory Appl. 2014, 2014, 100. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liou, Y.C.; Yao, J.C. Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 2015, 127. [Google Scholar] [CrossRef] [Green Version]
- Cholamjiak, P.; Cho, Y.J.; Suantai, S. Composite iterative schemes for maximal monotone operators in reflexive Banach spaces. Fixed Point Theory Appl. 2011, 2011, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H. Strong convergence of an explicit iterative algorithm for continuous pseudocontractions in Banach spaces. Nonlinear Anal. 2009, 70, 4039–4046. [Google Scholar] [CrossRef]
- Acedo, G.L.; Xu, H.K. Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 2007, 67, 2258–2271. [Google Scholar] [CrossRef]
- Anh, P.N.; Phuong, N.X. Fixed point methods for pseudomonotone variational inequalities involving strict pseudocontractions. Optim. 2015, 64, 1841–1854. [Google Scholar] [CrossRef]
- Strodiot, J.J.; Nguyen, V.H.; Vuong, P.T. Strong convergence of two hybrid extragradient methods for solving equilibrium and fixed point problems. Vietnam J. Math. 2012, 40, 371–389. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Postolache, M.; Yao, J.-C. Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics 2019, 7, 1189. https://doi.org/10.3390/math7121189
Yao Y, Postolache M, Yao J-C. Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics. 2019; 7(12):1189. https://doi.org/10.3390/math7121189
Chicago/Turabian StyleYao, Yonghong, Mihai Postolache, and Jen-Chih Yao. 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators" Mathematics 7, no. 12: 1189. https://doi.org/10.3390/math7121189
APA StyleYao, Y., Postolache, M., & Yao, J. -C. (2019). Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics, 7(12), 1189. https://doi.org/10.3390/math7121189