Next Article in Journal
Some Results on (sq)-Graphic Contraction Mappings in b-Metric-Like Spaces
Next Article in Special Issue
Geometric Dynamics on Riemannian Manifolds
Previous Article in Journal
Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory
Previous Article in Special Issue
Tseng Type Methods for Inclusion and Fixed Point Problems with Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators

1
School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
2
The Key Laboratory of Intelligent Information and Big Data Processing of NingXia Province, North Minzu University, Yinchuan 750021, China
3
Center for General Education, China Medical University, Taichung 40402, Taiwan
4
Romanian Academy, Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Bucharest 050711, Romania
5
Department of Mathematics and Informatics, University “Politehnica” of Bucharest, Bucharest 060042, Romania
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(12), 1189; https://doi.org/10.3390/math7121189
Submission received: 3 November 2019 / Revised: 1 December 2019 / Accepted: 2 December 2019 / Published: 4 December 2019

Abstract

:
In this paper, we are interested in the pseudomonotone variational inequalities and fixed point problem of pseudocontractive operators in Hilbert spaces. An iterative algorithm has been constructed for finding a common solution of the pseudomonotone variational inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed procedure is given. Several related corollaries are included.

1. Introduction

Let H be a real Hilbert space endowed with inner product and induced norm denoted by · , · and · , respectively. Let C H be a closed and convex set.
In this article, our study is related to a classical variational inequality (VI) of seeking an element u ˜ C verifying
f ( u ˜ ) , u u ˜ 0 , u C ,
where f : H H is a given operator, under the following assumptions:
(i)
V I ( C , f ) , the solution set of (1), is nonempty;
(ii)
f is pseudomonotone on H, i.e.,
f ( u ˜ ) , u u ˜ 0 f ( u ) , u u ˜ 0 , u , u ˜ H ;
(iii)
f is κ -Lipschitz continuous on H (for some κ > 0 ), i.e.,
f ( x ) f ( y ) κ x y , x , y H .
Numerical iterative methods have been presented, developed and adopted widely as algorithmic solutions to the concept of variational inequalities. This notion, that mainly involves some important operators, plays a key role in applied mathematics, such as obstacle problems, optimization problems, complementarity problems as a unified framework for the study of a large number of significant real-word problems arising in physics, engineering, economics and so on. For more information, the reader can refer to [1,2,3,4,5,6,7,8,9,10,11,12].
For solving VI (1) in which the involved operator f may be monotone, several iterative algorithms have been introduced and studied, see, e.g., [13,14,15,16,17,18]. Among them, the more popular iterative technique is the projected gradient rule ([19,20,21,22,23]): for the fixed previous iteration x n 1 , calculate the current iteration x n via the following manner
x n = P C [ x n 1 τ f ( x n 1 ) ] , n 1 ,
where P C means the projection operator from H onto C and the positive constant τ is the step-size.
The projected gradient rule (3) is an effective technique for solving VI (1). However, the involved operator f should be strongly monotone or inverse strongly monotone. In order to overcome this flaw, in [21], Korpelevich put forward an extragradient technique: for the fixed previous iteration x n 1 , calculate the current iteration x n via the following manner
y n 1 = P C [ x n 1 τ f ( x n 1 ) ] , x n = P C [ x n 1 τ f ( y n 1 ) ] , n 1 ,
where the step-size τ ( 0 , 1 / κ ) .
Korpelevich’s algorithm (4) provides an important idea for solving monotone variational inequality. Please refer to the references [24,25,26,27] for several important extended version of Korpelevich’s algorithm.
The another motivation of this paper is to study the following fixed point equation:
find x C such   that x = T x ,
where T : C C is a pseudocontractive operator.
Now, it is well-known that fixed point algorithm of successive approximation is one of the most important techniques in numerical mathematics ([28,29,30,31,32,33,34,35,36,37,38,39,40]). Focusing on the research with pseudocontractive operators originated in their relations with the important class of monotone operators. Algorithmic approximation theories and experiments of pseudocontractive operators have been studied extensively in the literature, see, for example, [41,42,43,44,45,46,47].
Motivated and inspired by the work in this field, the purpose of this paper is to investigate the problem of pseudomonotone variational inequality (1) and fixed point of pseudocontractive operators. We construct an iterative algorithm for seeking a common solution of the pseudomonotone variational inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed procedure is given. Several related corollaries are included.

2. Preliminaries

Let H be a real Hilbert space. Let C H be a nonempty, closed and convex set. Recall that an operator f : C C is said to be monotone if
f ( x ) f ( y ) , x y 0 , x , y C .
An operator T : C C is said to be pseudocontractive if
T u T u 2     u     u 2 +   ( I T ) u ( I T ) u 2
for all u , u C .
Recall that an operator f : C C is called weakly sequentially continuous, if for any given sequence { x n } C satisfying x n x ˜ , we conclude that f ( x n ) f ( x ˜ ) .
Recall that the metric projection P C : H C is an orthographic projection from H onto C, which possesses the following characteristic: for given x H ,
x P C [ x ] , y P C [ x ] 0 , y C .
The following symbols will be used in the sequel.
  • u n z denotes the weak convergence of u n to z .
  • u n z stands for the strong convergence of u n to z .
  • F i x ( T ) means the set of fixed points of T.
  • ω w ( u n ) = { u : { u n i } { u n } such that u n i u ( i ) } .
Lemma 1
([1]). Let H be a real Hilbert space. Then, we have
δ u + ( 1 δ ) u 2 = δ u 2 + ( 1 δ ) u 2 δ ( 1 δ ) u u 2 ,
u , u H and t [ 0 , 1 ] .
Lemma 2
([45]). Let C a nonempty closed convex subset of a real Hilbert space H. Let T : C C be an L-Lipschitz pseudocontractive operator. Let 0 < η < 1 1 + L 2 + 1 . Then,
u T ( ( 1 η ) u ˜ + η T u ˜ ) 2     u ˜ u 2 + ( 1 η ) u ˜ T ( ( 1 η ) u ˜ + η T u ˜ ) 2 ,
for all u ˜ C and u F i x ( T ) .
Lemma 3
([18]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : H H be a continuous and pseudomonotone operator. Then x V I ( C , f ) iff x solves the following dual variational inequality
f ( u ) , u x 0 , u H .
Lemma 4
([47]). Let H be a real Hilbert space, C a nonempty closed convex subset of H. Let T : C C be a continuous pseudocontractive operator. Then
(i) 
F i x ( T ) is a closed convex subset of C;
(ii) 
T is demi-closed, i.e., u n u ˜ and T ( u n ) u imply that T ( u ˜ ) = u .
Lemma 5
([15]). Let { μ n } ( 0 , ) , { γ n } ( 0 , 1 ) and { δ n } be three real number sequences. If μ n + 1 ( 1 γ n ) μ n + δ n for all n 0 with n = 1 γ n = and lim sup n δ n / γ n 0 or n = 1 | δ n | < , then lim n μ n = 0 .

3. Main Results

Let C be a convex and closed subset of a real Hilbert space H. Let the operator f be pseudomonotone on H, weakly sequentially continuous and Lipschitz continuous on C with Lipschitz constant κ > 0 . Let T : C C be an L-Lipschitz pseudocontractive operator with L 1 .
Next, we first present the following iterative algorithm for solving pseudomonotone variational inequality and fixed point problem of pseudocontractive operator T. In what follows, assume that Λ : = V I ( C , f ) F i x ( T ) .
Remark 1.
By virtue of (6), we know that u V I ( C , f ) u = P C [ u τ f ( u ) ] for all τ > 0 . Thus, if at some iterative step x n = P C [ x n f ( x n ) ] , then x n is a solution of variational inequality (1) and hence ω w ( x n ) V I ( C , f ) .
Remark 2.
For given x n , we can find m ( x n ) such that (14) holds. In fact, we can choose m ( x n ) such that γ m ( x n ) θ μ κ due to the Lipschitz continuity of f. So, (14) is well-defined. At the same time, there exists a positive ς > 0 such that γ m ( x n ) ς > 0 for all x n . As a matter of fact, if m ( x n ) = 0 , then γ m ( x n ) = ς = 1 . If m ( x n ) > 0 , then we have κ μ γ m ( x n ) γ > θ , which implies that 0 < γ θ μ κ < γ m ( x n ) < 1 for all n.
Proposition 1.
If x n P C [ x n f ( x n ) ] , then x n y n + μ γ m ( x n ) f ( y n ) 0 .
Proof. 
Let x = P Λ ( u ) . Owing to x n C and y n C , we have
f ( x ) , x n x 0 ,
and
f ( x ) , y n x 0 .
Applying the pseudomonotonicity (2) of f to (7) and (8), we obtain
f ( x n ) , x n x 0 ,
and
f ( y n ) , y n x 0 .
Since y n = P C [ x n μ γ m ( x n ) f ( x n ) ] , using the characteristic (6) of projection P C , we have
x n μ γ m ( x n ) f ( x n ) y n , y n x 0 .
Hence,
x n y n + μ γ m ( x n ) f ( y n ) , x n x = x n y n μ γ m ( x n ) f ( x n ) , x n x + μ γ m ( x n ) f ( x n ) , x n x + μ γ m ( x n ) f ( y n ) , x n y n + μ γ m ( x n ) f ( y n ) , y n x ( by ( 9 ) and ( 10 ) ) x n y n μ γ m ( x n ) f ( x n ) , x n x + μ γ m ( x n ) f ( y n ) , x n y n = x n y n μ γ m ( x n ) ( f ( x n ) f ( y n ) ) , x n y n + x n y n μ γ m ( x n ) f ( x n ) , y n x ( by ( 11 ) ) x n y n μ γ m ( x n ) ( f ( x n ) f ( y n ) ) , x n y n = x n y n 2 μ γ m ( x n ) f ( x n ) f ( y n ) , x n y n x n y n 2 μ γ m ( x n ) f ( x n ) f ( y n ) x n y n ( 1 θ ) x n y n 2 ( by ( 14 ) ) .
Since P C [ x n f ( x n ) ] x n , it follows that P C [ x n γ f ( x n ) ] x n for all γ > 0 . Thus, y n x n . According to (12), we deduce x n y n + μ γ m ( x n ) f ( y n ) 0 . □
Remark 3.
In case 1, we have f ( x n ) 0 (by Remark 1) and x n y n + μ γ m ( x n ) f ( y n ) 0 (by Remark 2) for all n 0 . According to Proposition 1, the sequence { u n } is well-defined and hence the sequence { x n } is well-defined.
Now, in this position, we give the convergence analysis of the iterative sequence { x n } generated by Algorithm 1.
Algorithm 1: Iterative procedures for VI and FP.
Let u C be a fixed point. Let { α n } , { σ n } and { δ n } be three real number sequences in ( 0 , 1 ) .
 Let γ ( 0 , 1 ) , μ ( 0 , 1 ) , θ ( 0 , 1 ) and τ ( 0 , 2 ) be four constants.
Step 1. Let x 0 C be an initial value. Set n = 0 .
Step 2. Assume that the sequence { x n } has been constructed and then calculate P C [ x n f ( x n ) ] .
Step 3. Case 1. If P C [ x n f ( x n ) ] x n , then calculate the sequence { y n } by the following manner
y n = P C [ x n μ γ m ( x n ) f ( x n ) ] ,

 where m ( x n ) = min { 0 , 1 , 2 , 3 , } and satisfies
μ γ m ( x n ) f ( x n ) f ( y n ) θ x n y n ,

 and consequently, calculate the sequences { u n } , { z n } and { x n + 1 } by the following rule
u n = P C x n τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) x n y n + μ γ m ( x n ) f ( y n ) 2 , z n = ( 1 σ n ) u n + σ n T [ ( 1 δ n ) u n + δ n T u n ] , x n + 1 = α n u + ( 1 α n ) z n .

Case 2. If P C [ x n f ( x n ) ] = x n , then calculate the sequence { x n + 1 } via the following form
z n = ( 1 σ n ) x n + σ n T [ ( 1 δ n ) x n + δ n T x n ] , x n + 1 = α n u + ( 1 α n ) z n .
Step 4. Set n : = n + 1 and return to Step 2.
Theorem 1.
Suppose that the iterative parameters { α n } , { σ n } and { δ n } satisfy the following assumptions:
(C1): 
lim n α n = 0 and n = 0 α n = ;
(C2): 
0 < σ ̲ < σ n < σ ¯ < δ n < δ ¯ < 1 1 + L 2 + 1 , n 0 .
Then the sequence { x n } generated by Algorithm 1 converges strongly to P Λ ( u ) .
Proof. 
Step 1. the sequence { x n } is bounded. First, we consider Case 1. In this case, from (15) and (12), we have
u n x 2   x n x τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) x n y n + μ γ m ( x n ) f ( y n ) 2 2 =   x n x 2 + τ 2 ( 1 θ ) 2 x n y n 4 x n y n + μ γ m ( x n ) f ( y n ) 2 2 τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) 2 x n y n + μ γ m ( x n ) f ( y n ) , x n x   x n x 2 ( 2 τ ) τ ( 1 θ ) 2 x n y n 4 x n y n + μ γ m ( x n ) f ( y n ) 2   x n x 2 .
In the light of (15) and Lemmas 1 and 2, we obtain
z n x 2 =   ( 1 σ n ) ( u n x ) + σ n ( T [ ( 1 δ n ) u n + δ n T u n ] x ) 2 = ( 1 σ n ) u n x 2 σ n ( 1 σ n ) T [ ( 1 δ n ) u n + δ n T u n ] u n 2 + σ n T [ ( 1 δ n ) u n + δ n T u n ] x 2   ( 1 σ n ) u n x 2 σ n ( 1 σ n ) T [ ( 1 δ n ) u n + δ n T u n ] u n 2 + σ n ( u n x 2 + ( 1 δ n ) u n T [ ( 1 δ n ) u n + δ n T u n ] 2 ) =   u n x 2 σ n ( δ n σ n ) u n T [ ( 1 δ n ) u n + δ n T u n ] 2   u n x 2 .
By (15), (16) and (17), we get
x n + 1 x =   α n ( u x ) + ( 1 α n ) ( z n x )   ( 1 α n ) z n x + α n u x   ( 1 α n ) x n x + α n u x .
By induction, we can deduce that x n + 1 x max { u x , x 0 x } . Hence, the sequence { x n } is bounded. It is easy to check that the sequence { x n } is also bounded in Case 2.
Step 2. ω w ( x n ) Λ . We firstly discuss Case 1. On account of (15), we achieve
x n + 1 x 2 =   α n ( u x ) + ( 1 α n ) ( z n x ) 2   ( 1 α n ) z n x 2 + 2 α n u x , x n + 1 x .
By virtue of (16), (17) and (18), we have
x n + 1 x 2 ( 1 α n ) x n x 2 ( 1 α n ) σ n ( δ n σ n ) u n T [ ( 1 δ n ) u n + δ n T u n ] 2 ( 1 α n ) ( 2 τ ) τ ( 1 θ ) 2 x n y n 4 x n y n + μ γ m ( x n ) f ( y n ) 2 + 2 α n u x , x n + 1 x = ( 1 α n ) x n x 2 + α n [ ( 1 α n ) σ n ( δ n σ n ) u n T [ ( 1 δ n ) u n + δ n T u n ] 2 α n ( 1 α n ) ( 2 τ ) τ ( 1 θ ) 2 x n y n 4 α n x n y n + μ γ m ( x n ) f ( y n ) 2 + 2 u x , x n + 1 x ] .
Write s n = x n x 2 and
t n = ( 1 α n ) ( 2 τ ) τ ( 1 θ ) 2 x n y n 4 α n x n y n + μ γ m ( x n ) f ( y n ) 2 + 2 u x , x n + 1 x ( 1 α n ) σ n ( δ n σ n ) u n T [ ( 1 δ n ) u n + δ n T u n ] 2 α n ,
for all n 0 .
We can adapt (19) as
s n + 1 ( 1 α n ) s n + α n t n
for all n 0 .
Now, we show that lim sup n t n is finite. First, thanks to (20), we deduce that t n 2 u x , x n + 1 x 2 u x x n + 1 x . This together with the boundedness of { x n } implies that lim sup n t n has a upper bound.
Next, we show that lim sup n t n has a lower bound. As a matter of fact, we can prove that lim sup n t n 1 . Assume the contrary that lim sup n t n < 1 . If so, there exists N such that t n < 1 when n N . Hence, for all n N , from (21), we deduce
s n + 1 ( 1 α n ) s n + α n t n ( 1 α n ) s n α n = s n α n ( 1 + s n ) s n α n .
It follows that s n + 1 s N k = N n α k , which implies that lim sup n s n s N lim sup n k = N n α k = . It is a contradiction. So, 1 lim sup n t n + . Thus, we can select a subsequence { x n i } { x n } (because of the boundedness of { x n } ) verifying x n i x C and
lim sup n t n = lim i t n i = lim i [ ( 2 τ ) τ ( 1 θ ) 2 x n i y n i 4 α n i x n i y n i + μ γ m ( x n i ) f ( y n i ) 2 + 2 u x , x n i + 1 x σ n i ( δ n i σ n i ) u n i T [ ( 1 δ n i ) u n i + δ n i T u n i ] 2 α n i ] .
Based on the boundedness of { x n i + 1 } , without loss of generality, assume that lim i 2 u x , x n i + 1 x exists. Hence, according to (22), we deduce that the following limit
lim i ( 2 τ ) τ ( 1 θ ) 2 x n i y n i 4 α n i x n i y n i + μ γ m ( x n i ) f ( y n i ) 2 + σ n i ( δ n i σ n i ) u n i T [ ( 1 δ n i ) u n i + δ n i T u n i ] 2 α n i
exists.
Since lim i α n i = 0 and lim inf i σ n i ( δ n i σ n i ) > 0 , it follows from (23) that
lim i x n i y n i 4 x n i y n i + μ γ m ( x n i ) f ( y n i ) 2 = 0
and
lim i u n i T [ ( 1 δ n i ) u n i + δ n i T u n i ] = 0 .
Note that x n i y n i + μ γ m ( x n i ) f ( y n i ) is bounded. In virtue of this fact and (24), we derive
lim i x n i y n i = 0
Combining (14) and (26), we obtain
lim i f ( x n i ) f ( y n i ) = 0 .
As a result of (15), we have the following estimate
u n x n =   P C x n τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) x n y n + μ γ m ( x n ) f ( y n ) 2 P C [ x n ] τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) .
This together with (24) implies that
lim i u n i x n i = 0 .
Applying the characterization (6) of projection P C , we have
x n i μ γ m ( x n i ) f ( x n i ) y n i , y n i x 0 , x C .
It yields
f ( x n i ) , x x n i f ( x n i ) , y n i x n i + 1 μ γ m ( x n i ) y n i x , y n i x n i , x C .
Noting that { f ( x n i ) } and { y n i } are bounded, γ θ κ < μ γ m ( x n i ) μ due to Remark 2, in view of (26) and (29), we obtain
lim inf i f ( x n i ) , x x n i 0 , x C .
Thanks to (30), we can choose a positive real numbers sequence { ϵ j } satisfying lim j ϵ j = 0 . For each ϵ j , there exists the smallest positive integer k i such that
f ( x n i j ) , x x n i j + ϵ j 0 , j k i .
Moreover, for each j > 0 , f ( x n i j ) 0 (by Remark 3), letting w ( x n i j ) = f ( x n i j ) f ( x n i j ) 2 , then f ( x n i j ) , w ( x n i j ) = 1 . By virtue of (31), we have
f ( x n i j ) , x + ϵ j w ( x n i j ) x n i j 0 ,
which implies, together with the pseudomonotonicity of f on H, that
f ( x + ϵ j w ( x n i j ) ) , x + ϵ j w ( x n i j ) x n i j 0 .
It follows that
f ( x ) , x x n i j f ( x ) f ( x + ϵ j w ( x n i j ) ) , x + ϵ j w ( x n i j ) x n i j + f ( x ) , ϵ j w ( x n i j ) .
Since the sequence { x n i j } is bounded, without loss of generality, we assume that x n i j v C as j . Furthermore, f ( x n i j ) f ( v ) due to the weakly sequentially continuity of f. Assume that f ( v ) 0 (otherwise, v V I ( C , f ) and ω w ( x n ) V I ( C , f ) ). Thus, we have
lim inf j f ( x n i j ) f ( v ) ,
and consequently,
lim j ϵ j w ( x n i j ) = lim j ϵ j f ( x n i j ) = 0 .
This together with (32) and f being Lipschitz continuous, we deduce
f ( x ) , x v 0 .
It follows from Lemma 3 that v V I ( C , f ) and hence ω w ( x n ) V I ( C , f ) .
Since T is L-Lipschitzian, we have
u n T u n   u n T [ ( 1 δ n ) u n + δ n T u n ] + T [ ( 1 δ n ) u n + δ n T u n ] T u n   u n T [ ( 1 δ n ) u n + δ n T u n ] + L δ n u n T u n ,
which yields
u n T u n     1 1 δ n L u n T [ ( 1 δ n ) u n + δ n T u n ] .
On the basis of (25), (28) and (34), we derive
lim j x n i j T x n i j = 0 .
Consequently, applying Lemma 4 to (35) to deduce that v F i x ( T ) . Thus, v V I ( C , f ) F i x ( T ) = Λ .
In case 2, we have x n V I ( C , f ) and the following estimate (by the similar argument as (19))
x n + 1 x 2 ( 1 α n ) x n x 2 ( 1 α n ) σ n ( δ n σ n ) x n T [ ( 1 δ n ) x n + δ n T x n ] 2 + 2 α n u x , x n + 1 x = ( 1 α n ) x n x 2 + α n [ ( 1 α n ) σ n ( δ n σ n ) x n T [ ( 1 δ n ) x n + δ n T x n ] 2 α n + 2 u x , x n + 1 x ] .
Consequently, there exists a subsequence { x n j } { x n } such that
lim j σ n j ( δ n j σ n j ) x n j T [ ( 1 δ n i ) x n j + δ n j T x n j ] 2 α n j = 0 .
It follows that
lim j x n j T x n j ] = 0 .
Thus, we also deduce that ω w ( x n ) Λ .
Step 3. x n P Λ ( u ) .
In Case 1 or Case 2, we have
lim sup n u x , x n + 1 x = u x , v x 0 .
From (16), (17) and (18), we obtain
x n + 1 x 2 =   α n ( u x ) + ( 1 α n ) ( z n x ) 2   ( 1 α n ) x n x 2 + 2 α n u x , x n + 1 x .
Finally, applying Lemma 5 with (36) to (37), we conclude that x n x . This completes the proof. □
Remark 4.
We assume that f is κ-Lipschitz continuous. However, the information of κ is not necessary priority to be known. That is, we need not to estimate the value of κ.
Remark 5.
It is obvious that monotonicity implies pseudomonotonicity. Hence, our theorem holds when the involved operator f is monotone.
Assume that the above Algorithm 2 does not terminate in a finite iterations.
Algorithm 2: Iterative procedures for VI.
Step 1. Fixed four constants γ ( 0 , 1 ) , μ ( 0 , 1 ) , θ ( 0 , 1 ) and τ ( 0 , 2 ) . Let x 0 C be an initial value. Set n = 0 .
Step 2. Assume that the sequence { x n } has been constructed and then calculate P C [ x n f ( x n ) ] . If P C [ x n f ( x n ) ] = x n , then stop. Otherwise, continuously proceed the following steps.
Step 3. Calculate
y n = P C [ x n μ γ m ( x n ) f ( x n ) ] ,

 where m ( x n ) = min { 0 , 1 , 2 , 3 , } and satisfies
μ γ m ( x n ) f ( x n ) f ( y n ) θ x n y n .
Step 4. Let u C be a fixed point. Let { α n } be a real number sequence in ( 0 , 1 ) . Compute the sequence { x n + 1 } via the following form
x n + 1 = α n u + ( 1 α n ) P C x n τ ( 1 θ ) x n y n 2 x n y n + μ γ m ( x n ) f ( y n ) x n y n + μ γ m ( x n ) f ( y n ) 2 .
Step 5. Set n : = n + 1 and return to Step 2.
Corollary 1.
Suppose that V I ( C , f ) . Assume that the iterative parameter { α n } satisfies condition (C1) in Theorem 1. Then the sequence { x n } generated by Algorithm 2 converges strongly to P V I ( C , f ) ( u ) .
Corollary 2.
Suppose that F i x ( T ) . Assume that the iterative parameters { α n } , { σ n } and { δ n } satisfy the conditions (C1) and (C2) in Theorem 1. Then the sequence { x n } generated by Algorithm 3 converges strongly to P F i x ( T ) ( u ) .
Algorithm 3: Iterative procedures for FP.
Step 1. Let x 0 C be an initial value. Set n = 0 .
Step 2. Assume that the sequence { x n } has been constructed. Let u C be a fixed point. Let { α n } , { σ n } and { δ n } be three real number sequences in ( 0 , 1 ) . Compute the sequences { z n } and { x n + 1 } via the following iterations
z n = ( 1 σ n ) x n + σ n T [ ( 1 δ n ) x n + δ n T x n ] , x n + 1 = α n u + ( 1 α n ) z n .

4. Applications

Let C be a convex and closed subset of a real Hilbert space H. Recall that an operator T : C C is said to be α -strictly pseudocontractive if there exists a constant α ( 0 , 1 ) satisfying
T z T z 2     z z 2 +   α ( I T ) z ( I T ) z 2
for all z , z C .
Remark 6.
It is easy to check that the class of pseudocontractive operators strictly includes the class of strictly pseudocontractive operators.
Proposition 2
([48]). Let C be a convex and closed subset of a real Hilbert space H. Let T : C C is said to be an α-strictly pseudocontractive operator. Then,
(i) 
T is 1 + α 1 α -Lipschitz;
(ii) 
I T is demi-closed at 0.
Now, by using Remark 6 and Proposition 2, we can apply Theorem 1 for solving pseudomonotone variational inequalities and fixed point problem of strictly pseudocontractive operators.
Theorem 2.
Let C be a convex and closed subset of a real Hilbert space H. Let the operator f be pseudomonotone on H, weakly sequentially continuous and Lipschitz continuous on C with Lipschitz constant κ > 0 . Let T : C C be an α-strictly pseudocontractive operator. Suppose that the iterative parameters { α n } , { σ n } and { δ n } satisfy the following assumptions:
(C1): 
lim n α n = 0 and n = 0 α n = ;
(C2): 
0 < σ ̲ < σ n < σ ¯ < δ n < δ ¯ < 1 1 + L 2 + 1 ( n 0 ) where L = 1 + α 1 α .
Then the sequence { x n } generated by Algorithm 1 converges strongly to P Λ ( u ) .
Remark 7.
In [49], Anh and Phuong introduced an iteration algorithm for solving pseudomonotone variational inequalities and fixed point problem of strictly pseudocontractive operators. Theorem 2 extends the main result of ([49] Theorem 3.3) from weak convergence to strong convergence.
Remark 8.
In [50], Strodiot, Nguyen and Vuong presented a shrinking projection algorithm for solving variational inequalities and fixed point problem of strictly pseudocontractive operators. Note that the the computation of projection P C n + 1 (([50] Algorithm 1-VI) is expensive. Our Algorithm 1 is more applicable.

Author Contributions

All the authors have contributed equally to this paper. All the authors have read and approved the final manuscript.

Funding

Yonghong Yao was supported in part by the grant TD13-5033. Jen-Chih Yao was partially supported by the Grant MOST 106-2923-E-039-001-MY3.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bello Cruz, J.-Y.; Iusem, A.-N. A strongly convergent direct method for monotone variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 2009, 30, 23–36. [Google Scholar] [CrossRef]
  2. Bello Cruz, J.-Y.; Iusem, A.-N. Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 2010, 46, 247–263. [Google Scholar] [CrossRef]
  3. Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
  4. Yao, Y.; Postolache, M.; Yao, J.-C. Iterative algorithms for generalized variational inequalities. UPB Sci. Bull. Ser. A 2019, 81, 3–16. [Google Scholar]
  5. Anh, P.K.; Vinh, N.T. Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators. Numer. Algorithms 2019, 81, 983–1001. [Google Scholar] [CrossRef]
  6. Migorski, S.; Fang, C.J.; Zeng, S.D. A new modified subgradient extragradient method for solving variational inequalities. Appl. Anal. 2019. [Google Scholar] [CrossRef]
  7. Malitsky, Y. Proximal extrapolated gradient methods for variational inequalities. Optim. Meth. Softw. 2018, 33, 140–164. [Google Scholar] [CrossRef] [Green Version]
  8. Zegeye, H.; Shahzad, N.; Yao, Y. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces. Optimization 2015, 64, 453–471. [Google Scholar] [CrossRef]
  9. Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions. Fixed Point Theory 2019, 20, 113–134. [Google Scholar] [CrossRef] [Green Version]
  10. Zhang, C.; Zhu, Z.; Yao, Y.; Liu, Q. Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities. Optimization 2019, 68, 2293–2312. [Google Scholar] [CrossRef]
  11. Thakur, B.S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
  12. Zhao, X.P.; Ng, K.F.; Li, C.; Yao, J.C. Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 2018, 78, 613–641. [Google Scholar] [CrossRef]
  13. Solodov, M.-V.; Tseng, P. Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 1996, 34, 1814–1830. [Google Scholar] [CrossRef] [Green Version]
  14. Yao, Y.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
  15. Yang, J.; Liu, H.W. Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 2019, 80, 741–752. [Google Scholar] [CrossRef]
  16. Yang, J.; Liu, H.W. A modified projected gradient method for monotone variational inequalities. J. Optim. Theory Appl. 2018, 179, 197–211. [Google Scholar] [CrossRef]
  17. Zhao, X.P.; Yao, J.C.; Yao, Y. A proximal algorithm for solving split monotone variational inclusions. UPB Sci. Bull. Ser. A 2020, in press. [Google Scholar]
  18. Cottle, R.W.; Yao, J.C. Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 1992, 75, 281–295. [Google Scholar] [CrossRef]
  19. He, B.-S.; Yang, Z.-H.; Yuan, X.-M. An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 2004, 300, 362–374. [Google Scholar] [CrossRef] [Green Version]
  20. Iiduka, H.; Takahashi, W. Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl. 2008, 339, 668–679. [Google Scholar] [CrossRef]
  21. Korpelevich, G.-M. An extragradient method for finding saddle points and for other problems. Ekon. Matorsz. Metod. 1976, 12, 747–756. [Google Scholar]
  22. Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
  23. Hieu, D.V.; Muu, L.D.; Quy, P.K.; Vy, L.V. Explicit extragradient-like method with regularization for variational inequalities. Results Math. 2019, 74, UNSP 137. [Google Scholar]
  24. Hieu, D.V.; Anh, P.K.; Muu, L.D. Modified extragradient-like algorithms with new stepsizes for variational inequalities. Comput. Optim. Appl. 2019, 73, 913–932. [Google Scholar] [CrossRef]
  25. Thong, D.V.; Gibali, A. Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 2019, 21, UNSP 20. [Google Scholar] [CrossRef]
  26. Malitsky, Y.V. Projected reflected gradient method for variational inequalities. SIAM J. Optim. 2015, 25, 502–520. [Google Scholar] [CrossRef] [Green Version]
  27. Mainge, P.E.; Gobinddass, M.L. Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 2016, 171, 146–168. [Google Scholar] [CrossRef]
  28. Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
  29. Yao, Y.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
  30. Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
  31. Sintunavarat, W.; Pitea, A. On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 2016, 9, 2553–2562. [Google Scholar] [CrossRef] [Green Version]
  32. Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Hybrid viscosity extragradient method for systems of variational inequalities, fixed Points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 2018, 19, 487–502. [Google Scholar] [CrossRef]
  33. Dadashi, V.; Postolache, M. Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators. Arab. J. Math. 2019. [Google Scholar] [CrossRef] [Green Version]
  34. Ceng, L.C.; Postolache, M.; Wen, C.F.; Yao, Y. Variational inequalities approaches to minimization problems with constraints of generalized mixed equilibria and variational inclusions. Mathematics 2019, 7, 270. [Google Scholar] [CrossRef] [Green Version]
  35. Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpath. J. Math. 2018, 34, 459–466. [Google Scholar]
  36. Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019. [Google Scholar] [CrossRef]
  37. Yao, Y.; Postolache, M.; Yao, J.-C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics 2019, 7, 61. [Google Scholar] [CrossRef] [Green Version]
  38. Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
  39. Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
  40. Thakur, D.; Thakur, B.S.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef] [Green Version]
  41. Zhao, X.P.; Sahu, D.R.; Wen, C.F. Iterative methods for system of variational inclusions involving accretive operators and applications. Fixed Point Theory 2018, 19, 801–822. [Google Scholar] [CrossRef]
  42. Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
  43. Chidume, C.E.; Abbas, M.; Ali, B. Convergence of the Mann iteration algorithm for a class of pseudocontractive mappings. Appl. Math. Comput. 2007, 194, 1–6. [Google Scholar] [CrossRef]
  44. Yao, Y.; Postolache, M.; Kang, S.M. Strong convergence of approximated iterations for asymptotically pseudocontractive mappings. Fixed Point Theory Appl. 2014, 2014, 100. [Google Scholar] [CrossRef] [Green Version]
  45. Yao, Y.; Liou, Y.C.; Yao, J.C. Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 2015, 127. [Google Scholar] [CrossRef] [Green Version]
  46. Cholamjiak, P.; Cho, Y.J.; Suantai, S. Composite iterative schemes for maximal monotone operators in reflexive Banach spaces. Fixed Point Theory Appl. 2011, 2011, 7. [Google Scholar] [CrossRef] [Green Version]
  47. Zhou, H. Strong convergence of an explicit iterative algorithm for continuous pseudocontractions in Banach spaces. Nonlinear Anal. 2009, 70, 4039–4046. [Google Scholar] [CrossRef]
  48. Acedo, G.L.; Xu, H.K. Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 2007, 67, 2258–2271. [Google Scholar] [CrossRef]
  49. Anh, P.N.; Phuong, N.X. Fixed point methods for pseudomonotone variational inequalities involving strict pseudocontractions. Optim. 2015, 64, 1841–1854. [Google Scholar] [CrossRef]
  50. Strodiot, J.J.; Nguyen, V.H.; Vuong, P.T. Strong convergence of two hybrid extragradient methods for solving equilibrium and fixed point problems. Vietnam J. Math. 2012, 40, 371–389. [Google Scholar]

Share and Cite

MDPI and ACS Style

Yao, Y.; Postolache, M.; Yao, J.-C. Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics 2019, 7, 1189. https://doi.org/10.3390/math7121189

AMA Style

Yao Y, Postolache M, Yao J-C. Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics. 2019; 7(12):1189. https://doi.org/10.3390/math7121189

Chicago/Turabian Style

Yao, Yonghong, Mihai Postolache, and Jen-Chih Yao. 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators" Mathematics 7, no. 12: 1189. https://doi.org/10.3390/math7121189

APA Style

Yao, Y., Postolache, M., & Yao, J. -C. (2019). Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators. Mathematics, 7(12), 1189. https://doi.org/10.3390/math7121189

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop