The First Eigenvalue Estimates of Warped Product Pseudo-Slant Submanifolds
Abstract
:1. Introduction
- (i)
- The second fundamental form of M is derived as:
- (ii)
- If the equality sign holds in (1), then is a totally geodesic submanifold with satisfying conditions:
2. Preliminaries
3. Warped Product Submanifolds of the Form
- (i)
- ,
- (ii)
- ,
- (i)
- ;
- (ii)
- ;
4. Main Proof of Inequality for Warped Product of the form
4.1. Proof of Theorem 1
4.2. Proof of Theorem 2
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y. Geometry of warped product CR-submanifold in Kaehler manifolds. Monatsh. Math. 2001, 133, 177–195. [Google Scholar] [CrossRef]
- Ali, J.W.L.; Alkhaldi, A.H. Geometric classification of warped product submanifolds of nearly Kaehler manifolds with a slant fiber. Int. J. Geom. Methods Mod. Phys. 2018. [Google Scholar] [CrossRef]
- Ali, A.; Laurian-Ioan, P. Geometric classification of warped products isometrically immersed in Sasakian space forms. Math. Nachrichten 2018, 292, 234–251. [Google Scholar]
- Ali, A.; Uddin, S.; Othman, W.A. Geometry of warped product pointwise semi-slant submanifolds of Kaehler manaifolds. Filomat 2017, 31, 3771–3788. [Google Scholar] [CrossRef]
- Al-Solamy, F.R. An inequality for warped product pseudo-slant submanifolds of nearly cosymplectic manifolds. J. Inequal. Appl. 2015, 2015, 306. [Google Scholar] [CrossRef]
- Chen, B.Y. A survey on geometry of warped product submanifolds. arXiv, 2013; arXiv:1307.0236v1[math.DG]. [Google Scholar]
- Dirik, S.; Atceken, M. Pseudo-slant submanifolds of a nearly cosymplectic manifold. Turk. J. Math. Comput. Sci. 2014, 14, 20140035. [Google Scholar]
- Arvanitoyeorgos, D.A. Biconservative ideal hypersurfaces in Euclidean spaces. J. Math. Anal. Appl. 2018, 458, 1147–1165. [Google Scholar]
- Khan, V.A.; Khan, K.A. Generic warped product submanifolds in nearly Kaehler manifolds. Beiträge Algebra Geom. 2009, 50, 337–352. [Google Scholar]
- Mustafa, A.; Uddin, S.; Khan, V.A.; Wong, B.R. Contact CR-warped product submanifolds of nearly trans Sasakian manifolds. Taiwan J. Math. 2013, 17, 1473–1486. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. Curvature invariants for statistical submanifolds of Hessian manifolds of sonstant Hessian curvature. Mathematics 2018, 6, 44. [Google Scholar] [CrossRef]
- Mihai, I. Contact CR-warped product submanifolds in Sasakian space forms. Geom. Dedicata 2004, 109, 165–173. [Google Scholar] [CrossRef]
- Sahin, B. Warped product submanifolds of a Kaehler manifolds with slant factor. Ann. Pol. Math. 2009, 95, 207–226. [Google Scholar] [CrossRef]
- Uddin, S.; Wong, B.R.; Mustafa, A. Warped product pseudo-slant submanifolds of a nearly cosymplectic manifold. Abstr. Appl. Anal. 2012, 2012, 420890. [Google Scholar] [CrossRef]
- Ali, A.; Othman, W.A.M.; Ozel, C. Some inequalities for warped product pseudo-slant submanifolds of nearly Kenmotsu manifolds. J. Inequal. Appl. 2015, 2015, 29. [Google Scholar] [CrossRef]
- Ali, A.; Ozel, C. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications. Int. J. Geom. Methods Mod. Phys. 2017, 14, 175002. [Google Scholar]
- Ali, A.; Laurain-Ioan, P. Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions. J. Geom. Phys. 2017, 114, 276–290. [Google Scholar] [CrossRef]
- Li, J.; He, G.; Zhao, P. On submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. Symmetry 2017, 9, 112. [Google Scholar] [CrossRef]
- Tripathi, M.M. Improved Chen-Ricci inequality for curvature-like tensors and its applications. Differ. Geom. Appl. 2011, 29, 685–698. [Google Scholar] [CrossRef]
- Uddin, S.; Chi, A.M.Y. Warped product pseudo-slant submanifolds of nearly Kaehler manifolds. An. St. Univ. Ovidius Constanta 2011, 3, 195–204. [Google Scholar]
- Cheng, S.Y. Eigenvalue comparison theorem and its geometric applications. Math. Z. 1975, 143, 289–297. [Google Scholar] [CrossRef]
- Berger, M.; Gauduchon, P.; Mazet, E. Le Spectre D’une Variétés Riemannienne; Springer: Berlin, Germany, 1971. [Google Scholar]
- Carriazo, A. New Developments in Slant Submanifolds; Narosa Publishing House: New Delhi, India, 2002. [Google Scholar]
- Cabrerizo, J.L.; Carriazo, A.; Fernandez, L.M.; Fernandez, M. Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 2000, 42, 125–138. [Google Scholar] [CrossRef]
- Bishop, R.L.; O’Neil, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–9. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Alkhaldi, A.H.; Ali, A.; Othman, W.A.M. The First Eigenvalue Estimates of Warped Product Pseudo-Slant Submanifolds. Mathematics 2019, 7, 162. https://doi.org/10.3390/math7020162
Ali R, Alkhaldi AH, Ali A, Othman WAM. The First Eigenvalue Estimates of Warped Product Pseudo-Slant Submanifolds. Mathematics. 2019; 7(2):162. https://doi.org/10.3390/math7020162
Chicago/Turabian StyleAli, Rifaqat, Ali H. Alkhaldi, Akram Ali, and Wan Ainun Mior Othman. 2019. "The First Eigenvalue Estimates of Warped Product Pseudo-Slant Submanifolds" Mathematics 7, no. 2: 162. https://doi.org/10.3390/math7020162
APA StyleAli, R., Alkhaldi, A. H., Ali, A., & Othman, W. A. M. (2019). The First Eigenvalue Estimates of Warped Product Pseudo-Slant Submanifolds. Mathematics, 7(2), 162. https://doi.org/10.3390/math7020162