Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation
Abstract
:1. Introduction
2. Optimal Iterative Methods Based on Inverse Interpolation
2.1. Optimal Two-Point Fourth Order Method
2.2. Optimal Three-Point Eighth Order Method
2.3. Optimal Four-Point Sixteenth Order Method
2.4. n-Point Method of Optimal Order
3. Review of Some Four-Point Optimal Methods and Numerical Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ortega, J.M.; Rheiboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint Methods for Solving Nonlinear Equations; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 1974, 235, 643–651. [Google Scholar] [CrossRef]
- Behl, R.; Argyros, I.K.; Motsa, S.S. A new highly efficient and optimal family of eighth order methods for solving nonlinear equations. Appl. Math. Comput. 2016, 282, 175–186. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. 2015, 275, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Generating optimal derivative-free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Model. 2013, 57, 1950–1956. [Google Scholar] [CrossRef]
- Zafar, F.; Yasmin, N.; Akram, S.; Junjua, M.D. A general class of derivative-free optimal root finding methods based on rational interpolation. Sci. World J. 2015, 2015, 934260. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Li, J.; Huang, F. An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 2011, 217, 9592–9597. [Google Scholar] [CrossRef]
- Steffensen, I.F. Remarks on iteration. Skand. Actuar. J. 1933, 16, 64–72. [Google Scholar] [CrossRef]
- Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Neta, B.; Petković, M.S. Construction of optimal order nonlinear solvers using inverse interpolation. Appl. Math. Comput. 2010, 217, 2448–2455. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, S.; Salimi, M.; Siegmund, S.; Lotfi, T. A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations. Math. Comput. Simul. 2016, 119, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Geum, Y.H.; Kim, Y.I. A biparametric family of optimally convergent sixteenth order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function. J. Comput. Appl. Math. 2011, 235, 3178–3188. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
Original Iterative Method | Modified Iterative Method |
---|---|
GK16: | MGK16: |
SL16: | MSL16: |
Test Functions | Exact Root | |
---|---|---|
0 | ||
1 | ||
7 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
coc | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
coc | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
coc | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
Diverges | Diverges | ||||||
Diverges | Diverges | ||||||
Diverges | Diverges | ||||||
coc | Diverges | 8.94 | 16.00 | Diverges | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | ||
coc | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
coc | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Error | GK16 | SL16 | NP16 | CT16 | MGK16 | MSL16 | MNP16 |
---|---|---|---|---|---|---|---|
Diverges | Diverges | Diverges | |||||
Diverges | Diverges | Diverges | |||||
Diverges | Diverges | Diverges | |||||
coc | Diverges | Diverges | Diverges | 16.12 | 16.08 | 16.49 | 16.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junjua, M.-u.-D.; Zafar, F.; Yasmin, N. Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation. Mathematics 2019, 7, 164. https://doi.org/10.3390/math7020164
Junjua M-u-D, Zafar F, Yasmin N. Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation. Mathematics. 2019; 7(2):164. https://doi.org/10.3390/math7020164
Chicago/Turabian StyleJunjua, Moin-ud-Din, Fiza Zafar, and Nusrat Yasmin. 2019. "Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation" Mathematics 7, no. 2: 164. https://doi.org/10.3390/math7020164
APA StyleJunjua, M. -u. -D., Zafar, F., & Yasmin, N. (2019). Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation. Mathematics, 7(2), 164. https://doi.org/10.3390/math7020164