Certain Geometric Properties of Lommel and Hyper-Bessel Functions
Abstract
:1. Introduction and Preliminaries
2. Close to Convexity of Modified Lommel Functions
3. Close to Convexity of Modified Hyper-Bessel Functions
4. Strongly Convexity and Strongly Starlikeness of Lommel Functions
5. Strongly Convexity and Strongly Starlikeness of Hyper-Bessel Functions
6. Some Applications for Strongly Starlikeness of Lommel Functions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baricz, Á.; Koumandos, S. Turan type inequalities for some Lommel functions of the first kind. Proc. Edinburgh Math. Soc. 2016, 59, 569–579. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1944. [Google Scholar]
- Chaggara, H.; Romdhane, N.B. On the zeros of the hyper-Bessel Function. Integr. Trans. Spec. Funct. 2015, 26, 96–101. [Google Scholar] [CrossRef]
- Baricz, Á. Geometric properties of generalized Bessel Functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar]
- Choi, J.H.; Kim, Y.C.; Srivastava, H.M. Convex and starlike generalized HypergeometricFunctions associated with the Hardy spaces. Com. Var. 1996, 31, 345–355. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Mustafa, N. Geometric Properties of Normalized Wright Functions. Math. Comput. Appl. 2016, 21, 14. [Google Scholar] [CrossRef]
- Orhan, H.; Yağmur, N. Geometric properties of generalized Struve functions. Ann. Alexandru Ioan Cuza Univ. Math. 2017, 63, 229–244. [Google Scholar] [CrossRef]
- Owa, S.; Nunokawa, M.; Saitoh, H.; Srivastava, H.M. Close-to-convexity, starlikeness, and convexity of certain analytic Functions. Appl. Math. Lett. 2002, 15, 63–69. [Google Scholar] [CrossRef]
- Din, M.U.; Raza, M.; Hussain, S.; Darus, M. Certain geometric properties of generalized Dini Functions. J. Funct. Spaces 2018, 2018, 2684023. [Google Scholar] [CrossRef]
- Prajapat, J.K. Certain geometric properties of the Wright Function. Integr. Trans. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Raza, M.; Din, M.U. Close-to-Convexity of q-Mittag-Leffler Functions. C. R. Acad. Bulg. Sci. 2018, 71, 1581–1591. [Google Scholar]
- Raza, M.; Din, M.U.; Malik, S.N. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016, 2016, 1896154. [Google Scholar] [CrossRef]
- Mondal, S.R.A. Swaminathan, On the positivity of certain trigonometric sums and their applications. Comput. Math. Appl. 2011, 62, 3871–3883. [Google Scholar] [CrossRef]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku 1935, 2, 167–188. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex Functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, S.; Raza, M.; Din, M.U. Certain Geometric Properties of Lommel and Hyper-Bessel Functions. Mathematics 2019, 7, 240. https://doi.org/10.3390/math7030240
Mushtaq S, Raza M, Din MU. Certain Geometric Properties of Lommel and Hyper-Bessel Functions. Mathematics. 2019; 7(3):240. https://doi.org/10.3390/math7030240
Chicago/Turabian StyleMushtaq, Saima, Mohsan Raza, and Muhey U Din. 2019. "Certain Geometric Properties of Lommel and Hyper-Bessel Functions" Mathematics 7, no. 3: 240. https://doi.org/10.3390/math7030240
APA StyleMushtaq, S., Raza, M., & Din, M. U. (2019). Certain Geometric Properties of Lommel and Hyper-Bessel Functions. Mathematics, 7(3), 240. https://doi.org/10.3390/math7030240