Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials
Abstract
:1. Introduction and Preliminaries
2. Proof of Theorem 1
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- (g)
- (h)
- (i)
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- (g)
- (h)
3. Further Remarks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special functions. In Encyclopedia of Mathematics and Its Applications; Series Number 71; Cambridge University Press: Cambrige, UK, 1999. [Google Scholar]
- Beals, R.; Wong, R. Special functions and orthogonal polynomials. In Cambridge Studies in Advanced Mathematics; Series Number 153; Cambridge University Press: Cambrige, UK, 2016. [Google Scholar]
- Kim, D.S.; Dolgy, D.V.; Kim, T.; Rim, S.-H. Identities involving Bernoulli and Euler polynomials arising from Chebyshev polynomials. Proc. Jangjeon Math. Soc. 2012, 15, 361–370. [Google Scholar]
- Kim, D.S.; Kim, T.; Lee, S.-H. Some identities for Bernoulli polynomials involving Chebyshev polynomials. J. Comput. Anal. Appl. 2014, 16, 172–180. [Google Scholar]
- Kim, D.S.; Kim, T.; Rim, S.-H. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Rim, S.-H.; Lee, S.-H. Hermite polynomials and their applications associated with Bernoulli and Euler numbers. Discret. Dyn. Nat. Soc. 2012, 2012, 974632. [Google Scholar] [CrossRef]
- Kim, D.S.; Rim, S.-H.; Kim, T. Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials. J. Inequal. Appl. 2012, 2012, 227. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials. Abstr. Appl. Anal. 2012, 2012, 957350. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V. Some identities on Bernoulli and Hermite polynomials associated with Jacobi polynomials. Discret. Dyn. Nat. Soc. 2012, 2012, 584643. [Google Scholar]
- Chen, G.; Chen, L. Some identities involving the Fubini polynomials and Euler polynomials. Mathematics 2018, 6, 300. [Google Scholar] [CrossRef]
- Kargin, L. Some formulae for products of Fubini polynomials with applications. arXiv, 2016; arXiv:1701.01023v1. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Symmetric identities for Fubini polynomials. Symmetry 2018, 10, 219. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Z. Some symmetric identities involving Fubini polynomials and Euler numbers. Symmetry 2018, 10, 303. [Google Scholar]
- Jang, G.-W.; Dolgy, D.V.; Jang, L.-C.; Kim, D.S.; Kim, T. Sums of products of two variable higher-order Fubini functions arising from Fourier series. Adv. Stud. Contemp. Math. 2018, 28, 533–550. [Google Scholar]
- Kim, D.S.; Kim, T.; Kwon, H.-I.; Park, J.-W. Two variable higher-order Fubini polynomials. J. Korean Math. Soc. 2018, 55, 975–986. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Representing sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials. Mathematics 2019, 7, 26. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, V.; Ryoo, S. Representing sums of finite products of Chebyshev polynomials of third and fourth kinds by Chebyshev polynomials. Symmetry 2018, 10, 258. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.-C.; Dolgy, D.V. Representation by Chebyshev polynomials for sums of finite products of Chebyshev polynomials. Symmetry 2018, 10, 742. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Jang, G.-W. Sums of finite products of Legendre and Laguerre polynomials by Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018, 28, 551–565. [Google Scholar]
- Dolgy, D.V.; Kim, D.S.; Kim, T.; Kwon, J. Connection problem for sums of finite products of Chebyshev polynomials of the third and fourth kinds. Symmetry 2018, 10, 617. [Google Scholar] [CrossRef]
- Kim, T.; Hwang, K.-W.; Kim, D.S.; Dolgy, D.V. Connection problem for sums of finite products of Legendre and Laguerre polynomials. Symmetry 2018, 11, 317. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kim, D. Representation by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first, third and fourth kinds. Adv. Differ. Equ. 2019, 2019, 110. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Dolgy, D.V. Expressing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials by several orthogonal polynomials. Mathematics 2018, 6, 210. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, V.; Park, J.-W. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. J. Inequal. Appl. 2018, 2018, 148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, D.S.; Jang, L.-C.; Jang, G.-W. Fourier series for functions related to Chebyshev polynomials of the first kind and Lucas polynomials. Mathematics 2018, 6, 276. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018, 28, 321–335. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Jang, G.-W.; Kwon, J. Fourier series of functions related to two variable higher-order Fubini polynomials. Adv. Stud. Contemp. Math. 2018, 28, 589–605. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.S.; Dolgy, D.V.; Kim, D.; Kim, T. Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials. Mathematics 2019, 7, 319. https://doi.org/10.3390/math7040319
Kim DS, Dolgy DV, Kim D, Kim T. Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials. Mathematics. 2019; 7(4):319. https://doi.org/10.3390/math7040319
Chicago/Turabian StyleKim, Dae San, Dmitry V. Dolgy, Dojin Kim, and Taekyun Kim. 2019. "Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials" Mathematics 7, no. 4: 319. https://doi.org/10.3390/math7040319
APA StyleKim, D. S., Dolgy, D. V., Kim, D., & Kim, T. (2019). Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials. Mathematics, 7(4), 319. https://doi.org/10.3390/math7040319