Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence, Uniqueness, and Stability Results for (3)
3.1. Existence and Uniqueness Results
- is continuous function on
3.2. Ulam Stability Results
- for all
3.3. Example
4. Existence, Uniqueness, and Stability Results for (4)
4.1. Existence and Uniqueness Results
- is continuous on
4.2. Ulam Stability Results
- ;
4.3. Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; ISBN 978-981-02-3457-7. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North–Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Liu, F.; Burrage, K. Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 2011, 62, 822–833. [Google Scholar] [CrossRef]
- Meral, F.; Royston, T.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Nigmatullin, R.; Omay, T.; Baleanu, D. On fractional filtering versus conventional filtering in economics. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 979–986. [Google Scholar] [CrossRef]
- Oldham, K. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009, 2009, 1–9. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71, 2391–2396. [Google Scholar] [CrossRef]
- Yang, C. Positive solutions for a three-point boundary value problem of fractional Q-Difference equations. Symmetry 2018, 10, 358. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Cabada, A.; Otero-Espinar, V.; Dontha, S. Existence and uniqueness of solutions for anti-periodic difference equations. Arch. Inequal. Appl. 2004, 2, 397–411. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 2008, 69, 3291–3298. [Google Scholar] [CrossRef]
- Chen, H.L. Antiperiodic wavelets. J. Comput. Math. 1996, 14, 32–39. [Google Scholar]
- Chen, Y.; An, H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
- Duan, J.; Chen, L. Solution of fractional differential equation systems and computation of matrix mittag-leffler functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef]
- Gafiychuk, V.; Datsko, B.; Meleshko, V.; Blackmore, D. Analysis of the solutions of coupled nonlinear fractional reaction-difusion equations. Chaos Soliton Fractals 2009, 41, 1095–1104. [Google Scholar] [CrossRef]
- Lazarević, M.P. Finite time stability analysis of PDα fractional control of robotic time-delay systems. Mech. Res. Commun. 2006, 33, 269–279. [Google Scholar] [CrossRef]
- Shao, J. Anti-periodic solutions for shunting inhibitory cellular neural networks with timevarying delays. Phys. Lett. A 2008, 372, 5011–5016. [Google Scholar] [CrossRef]
- Wang, G.; Ahmad, B.; Zhang, L. Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74, 792–804. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Cent. 2010, 2010 35, 295–304. [Google Scholar]
- Benavides, T.D. An existence theorem for implicit differential equations in a Banach space. Ann. Mat. Pura Appl. 1978, 118, 119–130. [Google Scholar] [CrossRef]
- Emmanuele, G.; Ricceri, B. On the existence of solutions of ordinary differential equations in implicit form in Banach spaces. Ann. Mat. Pura Appl. 1981, 129, 367–382. (In Italian) [Google Scholar] [CrossRef]
- Hokkanen, V.M. Existence of a periodic solution for implicit nonlinear equations. Differ. Integral Equ. 1996, 9, 745–760. [Google Scholar]
- Li, D. Peano’s theorem for implicit differential equations. J. Math. Anal. Appl. 2001, 258, 591–616. [Google Scholar] [CrossRef]
- Liu, B. An anti-periodic LaSalle oscillation theorem for a class of functional differential equations. J. Comput. Appl. Math. 2009, 223, 1081–1086. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 2014, 4, 60–72. [Google Scholar]
- Benchohra, M.; Lazreg, J.E. Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 2013, 17, 471–482. [Google Scholar]
- Nieto, J.J.; Ouahab, A.; Venktesh, V. Implicit fractional differential equations via the Liouville-Caputo derivative. Mathematics. 2015, 3, 398–411. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäiuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef]
- Zada, A.; Faisal, S.; Li, Y. On the Hyers-Ulam stability of first order impulsive delay differential equations. J. Funct. Spaces 2016, 2016, 1–6. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of functional equations and a problem of Ulam. Acta. Appl. Math. 2000, 62, 23–130. [Google Scholar] [CrossRef]
- Brillouët-Belluot, N.; Brzdȩk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2018, 716936. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; O’Regan, D. Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients. Bull. Malays. Math. Sci. Soc. 2017, 2017, 1–22. [Google Scholar] [CrossRef]
- Ahmad, N.; Ali, Z.; Shah, K.; Zada, A.; Rahman, G. Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equations. Complexity 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. Existence and stability analysis of three point boundary value problem. Int. J. Appl. Comput. Math. 2017, 3, 651–664. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S. Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order. Moroccan J. Pure Appl. Anal. 2015, 1, 22–37. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Henderson, J. Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses. Commun. Appl. Nonlinear Anal. 2015, 22, 46–67. [Google Scholar]
- Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. On stability for nonlinear implicit fractional differential equations. Le Matematiche 2015, 70, 49–61. [Google Scholar]
- Ali, Z.; Zada, A.; Shah, K. Ulam stability results for the solutions of nonlinear implicit fractional order differential equations. Hacettepe J. Math. Stat. 2018, 1–18. [Google Scholar] [CrossRef]
- Ali, A.; Samet, B.; Shah, K.; Khan, R.A. Existence and stability of solution to a toppled systems of differential equations of non–integer order. Bound. Value Probl. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound. Value Probl. 2018, 2018, 175. [Google Scholar] [CrossRef]
- Khan, A.; Shah, K.; Li, Y.; Khan, T.S. Ulam type stability for a coupled systems of boundary value problems of nonlinear fractional differential equations. J. Funct. Spaces 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [Google Scholar] [CrossRef]
- Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah Univ. Sci. 2017, 11, 1330–1342. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 2018, 1–19. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Z.; Kumam, P.; Shah, K.; Zada, A. Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations. Mathematics 2019, 7, 341. https://doi.org/10.3390/math7040341
Ali Z, Kumam P, Shah K, Zada A. Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations. Mathematics. 2019; 7(4):341. https://doi.org/10.3390/math7040341
Chicago/Turabian StyleAli, Zeeshan, Poom Kumam, Kamal Shah, and Akbar Zada. 2019. "Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations" Mathematics 7, no. 4: 341. https://doi.org/10.3390/math7040341
APA StyleAli, Z., Kumam, P., Shah, K., & Zada, A. (2019). Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations. Mathematics, 7(4), 341. https://doi.org/10.3390/math7040341