Some Liouville Theorems on Finsler Manifolds
Abstract
:1. Introduction
- 1.
- If and is a nonnegative superharmonic function on M, then u is a constant.
- 2.
- If and is a nonnegative subharmonic function on M, then u is a constant.
- 1.
- 2.
- A forward (backward) distance function w.r.t. F is a backward (forward) distance function w.r.t. , and vice versa.
- 3.
- A forward (backward) geodesic ball w.r.t. F is a backward (forward) geodesic ball w.r.t. , and vice versa.
- 4.
- If f is a superharmonic (subharmonic) function w.r.t. Δ, then is a subharmonic (superharmonic) function w.r.t. , and vice versa.
2. Preliminaries
- (i)
- Regularity: is smooth in ;
- (ii)
- Positive homogeneity: for ;
- (iii)
- Strong convexity: The fundamental quadratic form
3. Proof of the Main Theorems
- 1.
- If , then every nonnegative superharmonic function is a constant. In particular, if , then every nonnegative superharmonic function on M is a constant.
- 2.
- If , then every nonnegative subharmonic function is a constant.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yau, S.T. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 1975, 28, 201–208. [Google Scholar]
- Yau, S.T. Some function theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 1976, 25, 659–670. [Google Scholar] [CrossRef]
- Li, P. Uniqueness of L1 solutions for the Laplace equation and the heat equation on Riemannian manifolds. J. Diff. Geom. 1985, 20, 447–457. [Google Scholar] [CrossRef]
- Li, P.; Schoen, R. Lp and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 1984, 153, 279–301. [Google Scholar] [CrossRef]
- Sturm, K.T. Analysis on local Dirichlet spaces, I. recurrence, conservativeness and Lp-liouville properties. J. Reine Angew. Math. 1994, 456, 173–196. [Google Scholar]
- Li, X. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 2005, 84, 1295–1361. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Xia, Q. Some Liouville-type theorems for harmonic functions on Finsler manifolds. J. Math. Anal. Appl. 2014, 417, 979–995. [Google Scholar] [CrossRef]
- Yin, S.; He, Q. A generalized Omori-Yau maximum principle in Finsler geometry. Nonlinear Anal. Theory Methods Appl. 2015, 128, 227–247. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, P. Remarks on Liouville-type theorems on complete noncompact Finsler manifolds. Revista de la Unión Matemática Argentina 2018, 59, 255–264. [Google Scholar] [CrossRef]
- Grigor’yan, A. Analytic and geometric background of recurrence and nonexplosion of the brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 1999, 36, 135–249. [Google Scholar] [CrossRef]
- Ohta, S.; Sturm, K.-T. Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 2009, 62, 1386–1433. [Google Scholar] [CrossRef] [Green Version]
- Ohta, S.; Sturm, K.T. Bochner-Weitzenbóck formula and Li-Yau estimates on Finsler manifolds. Adv. Math. 2014, 252, 429–448. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Yau, S.T. Differential equations on Riemannian manifolds and their geometric applications. Commu. Pure Appl. Math. 1975, 28, 333–354. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yin, S. Some Liouville Theorems on Finsler Manifolds. Mathematics 2019, 7, 351. https://doi.org/10.3390/math7040351
Wang M, Yin S. Some Liouville Theorems on Finsler Manifolds. Mathematics. 2019; 7(4):351. https://doi.org/10.3390/math7040351
Chicago/Turabian StyleWang, Minqiu, and Songting Yin. 2019. "Some Liouville Theorems on Finsler Manifolds" Mathematics 7, no. 4: 351. https://doi.org/10.3390/math7040351
APA StyleWang, M., & Yin, S. (2019). Some Liouville Theorems on Finsler Manifolds. Mathematics, 7(4), 351. https://doi.org/10.3390/math7040351