Semi-Idempotents in Neutrosophic Rings
Abstract
:1. Introduction
2. Semi-Idempotents in the Modulo Neutrosophic Rings
- 1.
- There are two idempotents in say r and s.
- 2.
- such that , 1 or 0 and , 1 or r is the partial collection of idempotents and semi-idempotents of S.
- 1.
- has only six non-trivial idempotents associated with it.
- 2.
- If and are the idempotents, then, associated with each real idempotent , we have seven non-trivial neutrosophic idempotents associated with it, i.e. , such that , where takes the seven distinct values from the set .
3. Conjectures, Discussion and Conclusions
- 1.
- the number of idempotents in ;
- 2.
- the number of idempotents in ;
- 3.
- the number of non-trivial semi-idempotents in ; and
- 4.
- the number of non-trivial semi-idempotents in .
- 1.
- prove has more number of idempotents than ; and
- 2.
- prove has more number of idempotents and semi-idempotents than .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gray, M. A Radical Approach to Algebra; Addison Wesley: Boston, MA, USA, 1970. [Google Scholar]
- Jinnah, M.I.; Kannan, B. On semi-idempotents in rings. Proc. Jpn. Acad. Ser. A Math. Sci. 1986, 62, 211–212. [Google Scholar] [CrossRef]
- Vasantha, W.B. On semi-idempotents in group rings. Proc. Jpn. Acad. Ser. A Math. Sci. 1985, 61, 107–108. [Google Scholar] [CrossRef]
- Vasantha, W.B. On semi-idempotents in semi group rings. J. Guizhou Inst. Technol. 1989, 18, 105–106. [Google Scholar] [CrossRef]
- Vasantha, W.B. Idempotents and semi idempotents in near rings. J. Sichuan Univ. 1996, 33, 330–332. [Google Scholar]
- Vasantha, W.B. Semi idempotents in group rings of a cyclic group over the field of rationals. Kyungpook Math. J. 1990, 301, 243–251. [Google Scholar]
- Vasantha, W.B. A note on semi-idempotents in group rings. Ultra Sci. Phy. Sci. 1992, 4, 77–81. [Google Scholar]
- Vasantha, W.B. A note on units and semi idempotent elements in commutative group rings. Ganita 1991, 42, 33–34. [Google Scholar]
- Vasantha, W.B. Smarandache Ring; American Research Press: Santa Fe, NM, USA, 2002. [Google Scholar]
- Smarandache, F. Neutrosophy, A New Branch of Philosophy. Multiple Valued Logic. 2002, 8, 297–384. [Google Scholar]
- Vasantha, W.B.; Smaradache, F. Neutrosophic Rings; Hexis: Phoenix, AZ, USA, 2006. [Google Scholar]
- Agboola, A.A.D.; Akinola, A.D.; Oyebola, O.Y. Neutrosophic Rings I. Int. J. Math. Comb. 2011, 4, 115. [Google Scholar]
- Ali, M.; Smarandache, F.; Shabir, M.; Naz, M. Soft Neutrosophic Ring and Soft Neutrosophic Field. Neutrosophic Sets Syst. 2014, 3, 53–59. [Google Scholar]
- Ali, M.; Smarandache, F.; Shabir, M.; Vladareanu, L. Generalization of Neutrosophic Rings and Neutrosophic Fields. Neutrosophic Sets Syst. 2014, 5, 9–13. [Google Scholar]
- Ali, M.; Shabir, M.; Smarandache, F.; Vladareanu, L. Neutrosophic LA-semigroup Rings. Neutrosophic Sets Syst. 2015, 7, 81–88. [Google Scholar]
- Broumi, S.; Smarandache, F.; Maji, P.K. Intuitionistic Neutrosphic Soft Set over Rings. Math. Stat. 2014, 2, 120–126. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29, 595–601. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Triplet Groups and Their Applications to Mathematical Modelling; EuropaNova: Brussels, Belgium, 2017; ISBN 978-1-59973-533-7. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet ring and its applications. Bull. Am. Phys. Soc. 2017, 62, 7. [Google Scholar]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F.; Zhang, X. Neutrosophic Triplets in Neutrosophic Rings. Mathematics 2019. submitted. [Google Scholar]
- Kandasamy, I. Double-valued neutrosophic sets, their minimum spanning trees, and clustering algorithm. J. Intell. Syst. 2018, 27, 163–182. [Google Scholar] [CrossRef]
- Kandasamy, I.; Smarandache, F. Triple Refined Indeterminate Neutrosophic Sets for personality classification. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. A Classical Group of Neutrosophic Triplet Groups Using {Z2p, ×}. Symmetry 2018, 10, 194. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Duplets of {Zpn, ×} and {Zpq, ×} and Their Properties. Symmetry 2018, 10, 345. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Algebraic Structure of Neutrosophic Duplets in Neutrosophic Rings 〈Z ∪ I〉, 〈Q ∪ I〉 and 〈R ∪ I〉. Neutrosophic Sets Syst. 2018, 23, 85–95. [Google Scholar]
- Arena, P.; Fortuna, L.; Muscato, G.; Xibilia, M.G. Multilayer Perceptrons to Approximate Quaternion Valued Functions. Neural Netw. 1997, 10, 335–342. [Google Scholar] [CrossRef]
S.No | Real | Neutrosophic | Sum | Missing |
---|---|---|---|---|
1 + 5 = 6 | ||||
1 + 9 = 10 | ||||
1 + 14 = 15 | ||||
1 | 1 | 1 + 15 = 16 | 1 | |
1 + 20 = 21 | ||||
1 + 24 = 25 | ||||
1 + 29 = 0 | ||||
6 + 4 = 10 | ||||
6 + 9 = 15 | ||||
6 + 10 = 16 | ||||
2 | 6 | 6 + 15 = 1 | 6 | |
6 + 24 = 0 | ||||
6 + 19 = 25 | ||||
6 + 25 ≡ 1 | ||||
10 + 5 = 15 | ||||
10 + 6 = 16 | ||||
10 + 15 = 25 | ||||
3 | 10 | 10 + 20 ≡ 0 | 10 | |
10 + 21 ≡ 1 | ||||
10 + 26 ≡ 6 | ||||
10 + 11 = 21 | ||||
15 + 1 = 16 | ||||
15 + 5 = 20 | ||||
15 + 6 = 21 | ||||
4 | 15 | 15 + 10 = 25 | 15 | |
15 + 15 ≡ 0 | ||||
15 + 16 ≡ 1 | ||||
15 + 21 ≡ 6 | ||||
0 | ||||
1 | ||||
6 | ||||
5 | 16 | 10 | 16 | |
15 | ||||
16 + 5 = 21 | ||||
16 + 9 = 25 | ||||
21 + 4 = 25 | ||||
21 + 9 ≡ 0 | ||||
21 + 10 ≡ 1 | ||||
6 | 21 | 21 + 15 ≡ 6 | 21 | |
21 + 19 ≡ 10 | ||||
21 + 24 ≡ 15 | ||||
21 + 25 ≡ 16 | ||||
25 + 5 ≡ 0 | ||||
25 + 6 ≡ 1 | ||||
25 + 11 ≡ 6 | ||||
7 | 25 | 25 + 15 ≡ 10 | 25 | |
25 + 20 ≡ 15 | ||||
25 + 21 ≡ 16 | ||||
25 + 26 ≡ 21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandasamy W.B., V.; Kandasamy, I.; Smarandache, F. Semi-Idempotents in Neutrosophic Rings. Mathematics 2019, 7, 507. https://doi.org/10.3390/math7060507
Kandasamy W.B. V, Kandasamy I, Smarandache F. Semi-Idempotents in Neutrosophic Rings. Mathematics. 2019; 7(6):507. https://doi.org/10.3390/math7060507
Chicago/Turabian StyleKandasamy W.B., Vasantha, Ilanthenral Kandasamy, and Florentin Smarandache. 2019. "Semi-Idempotents in Neutrosophic Rings" Mathematics 7, no. 6: 507. https://doi.org/10.3390/math7060507
APA StyleKandasamy W.B., V., Kandasamy, I., & Smarandache, F. (2019). Semi-Idempotents in Neutrosophic Rings. Mathematics, 7(6), 507. https://doi.org/10.3390/math7060507