Complex Dynamical Behaviors of Lorenz-Stenflo Equations
Abstract
:1. Introduction
2. Boundedness and Global Attraction
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lorenz, E.N. Deterministic non-periods flows. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Rössler, O.E. An equation for hyperchaos. Phys. Lett. A 1979, 71, 155–157. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Mokaev, T.; Vasilyev, P. Numerical justification of Leonov conjecture on Lyapunov dimension of Rössler attractor. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1027–1034. [Google Scholar] [CrossRef]
- Chua, L.O.; Komura, M.; Matsumoto, T. The double scroll family. IEEE Trans. Circuits Syst. 1986, 33, 1072–1097. [Google Scholar] [CrossRef]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G. A new chaotic attractor coined. Int. J. Bifurc. Chaos 2002, 12, 659–661. [Google Scholar] [CrossRef]
- Leonov, G. General existence conditions of homoclinic trajectories in dissipative systems. Shimizu-Morioka, Lu and Chen systems. Phys. Lett. A 2012, 376, 3045–3050. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, M.J. A hyperchaos generated from Lorenz system. Phys. A 2008, 387, 3751–3758. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, C.; Kan, H. An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl. Math. Comput. 2015, 252, 201–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 2015, 26, 10–20. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Arecchi, F.T.; Meucci, R.; Garbo, A.D. Synchronization of Shilnikov chaos in CO2 laser with feedback. Laser Phys. 2014, 11, 1235–1239. [Google Scholar]
- Zhang, F.C.; Liao, X.F.; Zhang, G.Y. Qualitative behaviors of the continuous-time chaotic dynamical systems describing the interaction of waves in plasma. Nonlinear Dyn. 2017, 88, 1623–1629. [Google Scholar] [CrossRef]
- Kuznetsov, N.V.; Leonov, G.A.; Yuldashev, M.V.; Yuldashev, R.V. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 39–49. [Google Scholar] [Green Version]
- Zhou, P.; Zhu, P. A practical synchronization approach for fractional-order chaotic systems. Nonlinear Dyn. 2017, 89, 1719–1726. [Google Scholar] [CrossRef]
- Zhou, P.; Cai, H.; Yang, C.D. Stabilization of the unstable equilibrium points of the fractional-order BLDCM chaotic system in the sense of Lyapunov by a single-state variable. Nonlinear Dyn. 2016, 84, 2357–2361. [Google Scholar] [CrossRef]
- Ren, F.; Cao, J. Anti-synchronization of stochastic perturbed delayed chaotic neural networks. Neural Comput. Appl. 2009, 18, 515–521. [Google Scholar] [CrossRef]
- Ahmad, I.; Saaban, A.; Ibrahim, A.; Shahzad, M. Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions. Mathematics 2015, 3, 1222–1240. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.H.; Du, W.S. A New Family of Chaotic Systems with Different Closed Curve Equilibrium. Mathematics 2019, 7, 94. [Google Scholar] [CrossRef]
- Stenflo, L. Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys. Scr. 1996, 53, 83–84. [Google Scholar] [CrossRef]
- Yu, M.Y.; Yang, B. Periodic and chaotic solutions of the generalized Lorenz equations. Phys. Scr. 1996, 54, 140–142. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; Jeon, Y.L.; Baik, J.J. Periodicity of the Lorenz–Stenflo equations. Phys. Scr. 2015, 90, 065201. [Google Scholar] [CrossRef]
- Yu, M.Y.; Zhou, C.T.; Lai, C.H. The bifurcation characteristics of the generalized Lorenz equations. Phys. Scr. 1996, 54, 321–324. [Google Scholar] [CrossRef]
- Zhou, C.; Lai, C.H.; Yu, M.Y. Bifurcation behavior of the generalized Lorenz equations at large rotation numbers. J. Math. Phys. 1997, 38, 5225–5239. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Z.; Lin, C. Some criteria for the global finite-time synchronization of two Lorenz–Stenflo systems coupled by a new controller. Appl. Math. Model. 2014, 38, 4076–4085. [Google Scholar] [CrossRef]
- Zhang, F.C.; Mu, C.L.; Zhou, S.M.; Zheng, P. New results of the ultimate bound on the trajectories of the family of the Lorenz systems. Discrete Contin. Dyn. Syst. Ser. B 2015, 20, 1261–1276. [Google Scholar]
- Zhang, F.C.; Liao, X.F.; Mu, C.L.; Zhang, G.Y.; Chen, Y.A. On global boundedness of the Chen system. Discret. Contin. Dyn. Syst. Ser. B 2017, 22, 1673–1681. [Google Scholar] [CrossRef] [Green Version]
- Leonov, G. Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. J. Appl. Math. Mech. 2001, 65, 19–32. [Google Scholar] [CrossRef]
- Leonov, G.; Bunin, A.; Koksch, N. Attractor localization of the Lorenz system. Z. Angew. Math. Mech. 1987, 67, 649–656. [Google Scholar] [CrossRef]
- Zhang, F.C.; Zhang, G.Y. Further results on ultimate bound on the trajectories of the Lorenz system. Qual. Theory Dyn. Syst. 2016, 15, 221–235. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Xiao, M. Complex Dynamical Behaviors of Lorenz-Stenflo Equations. Mathematics 2019, 7, 513. https://doi.org/10.3390/math7060513
Zhang F, Xiao M. Complex Dynamical Behaviors of Lorenz-Stenflo Equations. Mathematics. 2019; 7(6):513. https://doi.org/10.3390/math7060513
Chicago/Turabian StyleZhang, Fuchen, and Min Xiao. 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations" Mathematics 7, no. 6: 513. https://doi.org/10.3390/math7060513
APA StyleZhang, F., & Xiao, M. (2019). Complex Dynamical Behaviors of Lorenz-Stenflo Equations. Mathematics, 7(6), 513. https://doi.org/10.3390/math7060513