A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet
Abstract
:1. Introduction
2. Preliminaries and Notations
Haar Wavelet
3. Convergence Analysis
4. Numerical Results
5. Error Estimation and Residual Correction
6. Numerical Results and Discussion
Numerical Experiments
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jafari, H.; Momani, S. Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 2007, 370, 388–396. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 2007, 189, 541–548. [Google Scholar] [CrossRef]
- Abdulaziz, O.; Hashima, I.; Momani, S. Solving systems of fractional differential equations by homotopy perturbation method. Phys. Lett. A 2008, 372, 451–459. [Google Scholar] [CrossRef]
- Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Morgadoa, M.L.; Ford, N.J.; Limac, P.M. Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 2013, 252, 159–168. [Google Scholar] [CrossRef]
- Bhalekar, S.; Gejji, V.D. Fractional ordered Liu system with time-delay. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2178–2191. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Ghasemia, M.; Kajani, M.T. Numerical solution of time-varying delay systems by Chebyshev wavelets. Appl. Math. Model. 2011, 35, 5235–5244. [Google Scholar] [CrossRef]
- Krol, K. Asymptotic properties of fractional delay differential equations. Appl. Math. Comput. 2011, 218, 1515–1532. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Li, C.; Lu, J. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 2007, 48, 409–416. [Google Scholar] [CrossRef]
- Chen, Y.; Moore, K.L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 2002, 29, 191–200. [Google Scholar] [CrossRef]
- Khader, M.M.; Hendy, A.S. The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method. Int. J. Pure Appl. Math. 2012, 74, 287–297. [Google Scholar]
- Odibat, Z.; Momani, S. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 2008, 36, 167–174. [Google Scholar] [CrossRef]
- Khader, M.M. Numerical treatment for solving fractional Riccati differential equation. J. Egypt. Math. Soc. 2013, 21, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Wu, B.Y.; Wang, R.T. Reproducing kernel method for fractional Riccati differential equations. Abstr. Appl. Anal. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Yuzbasi, S. Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 2013, 219, 6328–6343. [Google Scholar]
- Li, Y. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2284–2292. [Google Scholar]
- Wang, Y.; Fan, Q. The second kind Chebyshev wavelet method for solving fractional differential equations. Appl. Math. Comput. 2012, 218, 8592–8601. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Abdideh, M. Application of wavelet transform to detect fractured zones using conventional well logs data (Case study: Southwest of Iran). Int. J. Pet. Eng. 2016, 2, 125–139. [Google Scholar] [CrossRef]
- Aziz, I.; Islam, S.; Khan, W. Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 2011, 61, 2770–2781. [Google Scholar] [CrossRef] [Green Version]
- Aziz, I.; Islam, S.; Sarler, B. Wavelet collocation method for the numerical solution of elliptic boundary value problems. Appl. Math. Model. 2013, 37, 676–694. [Google Scholar] [CrossRef]
- Islam, S.; Aziz, I.; Sarler, B. The numerical solution of second order boundary value problems by collocations method with Haar wavelet. Math. Comput. Model. 2010, 52, 1577–1590. [Google Scholar] [CrossRef]
- Islam, S.; Sarler, B.; Aziz, I.; Haq, F. Haar wavelet collocation method for the numerical solution of boundary layer fuid flow problems. Int. J. Therm. Sci. 2011, 50, 686–697. [Google Scholar] [CrossRef]
- Islam, S.; Aziz, I.; Fhaid, A.; Shah, A. A numerical solution of parabolic partial differential equations using Haar wavelet and Legendre wavelets. Appl. Math. Model. 2013, 37, 9455–9481. [Google Scholar] [CrossRef]
- Aziz, I.; Islam, S. New alogrithm for the numerical solution of nonlinear Fredholam and Volterra integral equations using Haar wavelet. J. Comput. Appl. Math. 2013, 239, 333–345. [Google Scholar] [CrossRef]
- Lepik, U. Solving fractional integral equations by the Haar wavelet method. Appl. Math. Comput. 2009, 214, 468–478. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Lepik, U. Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Compt. 2007, 185, 695–704. [Google Scholar] [CrossRef]
- Bellman, R.; Cooke, K.L. Differential-Difference Equations; Academic Press: London, UK, 1963. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bellen, A.; Zennaro, M. Numerical Methods for Delay Differential Equations; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Datta, K.B.; Mohan, B.M. Orthogonal Functions in Systems and Control; World Scientific: Singapore, 1995. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Alquran, M.; Jaradat, H.M.; Syam, M.I. Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method. Nonlinear Dyn. 2017, 90, 2525–2529. [Google Scholar] [CrossRef]
- Aziz, I.; Amin, R. Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet. Appl. Math. Model. 2016, 40, 10286–10299. [Google Scholar] [CrossRef]
- Aziz, I.; Haq, F. A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 2010, 59, 2026–2036. [Google Scholar] [CrossRef] [Green Version]
- Majak, J.; Shvartsman, B.S.; Kirs, M.; Pohlak, M.; Herranen, H. Convergence theorem for the Haar wavelet-based discretization method. Compos. Struct. 2015, 126, 227–232. [Google Scholar] [CrossRef]
- Majak, J.; Shvartsman, B.; Karjust, K.; Mikola, M.; Haavajoe, A.; Pohlak, M. On the accuracy of the Haar wavelet discretization method. Compos. Part B 2015, 80, 321–327. [Google Scholar] [CrossRef]
J | N | M | |
---|---|---|---|
1 | 4 | 8 | 4.71362 |
2 | 8 | 16 | 1.02141 |
3 | 16 | 32 | 3.72674 |
4 | 32 | 64 | 2.61325 |
5 | 64 | 128 | 4.58470 |
6 | 128 | 256 | 1.84356 |
7 | 256 | 512 | 4.01407 |
8 | 512 | 1024 | 1.37851 |
9 | 1024 | 2048 | 3.93057 |
J | N | M | |
---|---|---|---|
1 | 4 | 8 | 4.07815 |
2 | 8 | 16 | 2.08991 |
3 | 16 | 32 | 4.21256 |
4 | 32 | 64 | 2.63916 |
5 | 64 | 128 | 3.12723 |
6 | 128 | 256 | 1.61477 |
7 | 256 | 512 | 3.10984 |
8 | 512 | 1024 | 1.15074 |
9 | 1024 | 2048 | 4.18620 |
J | N | M | |
---|---|---|---|
1 | 4 | 8 | 5.86412 |
2 | 8 | 16 | 2.70831 |
3 | 16 | 32 | 3.44670 |
4 | 32 | 64 | 2.71416 |
5 | 64 | 128 | 5.50248 |
6 | 128 | 256 | 1.54249 |
7 | 256 | 512 | 5.44532 |
8 | 512 | 1024 | 1.13653 |
9 | 1024 | 2048 | 3.65001 |
J | N | M | |
---|---|---|---|
1 | 4 | 8 | 1.29043 |
2 | 8 | 16 | 3.62737 |
3 | 16 | 32 | 1.51488 |
4 | 32 | 64 | 4.07078 |
5 | 64 | 128 | 1.76634 |
6 | 128 | 256 | 5.54249 |
7 | 256 | 512 | 3.61688 |
8 | 512 | 1024 | 1.74098 |
9 | 1024 | 2048 | 4.80576 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khashan, M.M.; Amin, R.; Syam, M.I. A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet. Mathematics 2019, 7, 545. https://doi.org/10.3390/math7060545
Khashan MM, Amin R, Syam MI. A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet. Mathematics. 2019; 7(6):545. https://doi.org/10.3390/math7060545
Chicago/Turabian StyleKhashan, M. Motawi, Rohul Amin, and Muhammed I. Syam. 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet" Mathematics 7, no. 6: 545. https://doi.org/10.3390/math7060545
APA StyleKhashan, M. M., Amin, R., & Syam, M. I. (2019). A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet. Mathematics, 7(6), 545. https://doi.org/10.3390/math7060545