Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap
Abstract
:1. Introduction
2. Firoozbakht, Nicholson, and Farhadian
3. Sufficient Condition for the Nicholson and Firoozbakht Conjectures
4. Verifying the Firoozbakht and Nicholson Conjectures for All Primes p < 264
5. Sufficient Conditions for the Farhadian Conjecture
6. Verifying the Farhadian Conjecture for All Primes p < 264
7. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Ribenboim, P. The Little Book of Big Primes; Springer: New York, NY, USA, 1991. [Google Scholar]
- Ribenboim, P. The New Book of Prime Number Records; Springer: New York, NY, USA, 1996. [Google Scholar]
- Ribenboim, P. The Little Book of Bigger Primes; Springer: New York, NY, USA, 2004. [Google Scholar]
- Wells, D. Prime Numbers: The Most Mysterious Figures in Math; John Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Cramér, H. Some theorems concerning prime numbers. Ark. Mat. Astron. Phys. 1920, 15, 5. [Google Scholar]
- Cramér, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 1936, 2, 23–46. [Google Scholar] [CrossRef]
- Goldston, D.A. On a result of Littlewood concerning prime numbers. Acta Arith. 1982, 3, 263–271. [Google Scholar] [CrossRef]
- Rosser, J.B. The n’th Prime is Greater than n ln n. Proc. Lond. Math. Soc. 1938, 45, 21–44. [Google Scholar]
- Rosser, J.B. Explicit Bounds for some functions of prime numbers. Am. J. Math. 1941, 63, 211–232. [Google Scholar] [CrossRef]
- Cesàro, E. Sur une formule empirique de M. Pervouchine. Comptes Rendus 1894, 119, 848–849. [Google Scholar]
- Cipolla, M. La determinazione assintotica dell’nimo numero primo. Mat. Napoli 1902, 3, 132–166. [Google Scholar]
- Rosser, J.B.; Schoenfeld, L. Approximate Formulas for Some Functions of Prime Numbers. Ill. J. Math. 1962, 6, 64–97. [Google Scholar] [CrossRef]
- Sándor, J. On certain sequences and series with applications in prime number theory. Gaz. Mat. Met. Inf. 1985, 6, 1–2. [Google Scholar]
- Dusart, P. The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2. Math. Comput. 1999, 68, 411–415. [Google Scholar] [CrossRef]
- Lowry-Duda, D. A Short Note on Gaps between Powers of Consecutive Primes. arXiv 2017, arXiv:1709.07847. [Google Scholar]
- Dusart, P. Estimates of some functions over primes without RH. arXiv 2010, arXiv:1002.0442. [Google Scholar]
- Trudgian, T. Updating the error term in the prime number theorem. Ramanujan J. 2016, 39, 225. [Google Scholar] [CrossRef]
- Dusart, P. Explicit estimates of some functions over primes. Ramanujan J. 2018, 45, 227. [Google Scholar] [CrossRef]
- Axler, C. New estimates for some functions defined over primes. arXiv 2017, arXiv:1703.08032. [Google Scholar]
- Visser, M. Primes and the Lambert W function. Mathematics 2018, 6, 56. [Google Scholar] [CrossRef]
- Andrica, D. Note on a conjecture in prime number theory. Studia Univ. Babes–Bolyai Math. 1986, 31, 44–48. [Google Scholar]
- Visser, M. Variants on Andrica’s conjecture with and without the Riemann hypothesis. Mathematics 2018, 6, 289. [Google Scholar] [CrossRef]
- Visser, M. Strong version of Andrica’s conjecture. arXiv 2018, arXiv:1812.02762. [Google Scholar]
- Farideh Firoozbakht. Unpublished. 1982. Available online: https://www.primepuzzles.net/thepuzzlers/Firoozbakht.htm (accessed on 30 July 2019).
- Rivera, C. (Ed.) Conjecture 30. The Firoozbakht Conjecture. 2002. Available online: https://www.primepuzzles.net/conjectures/conj_030.htm (accessed on 30 July 2019).
- Kourbatov, A. Verification of the Firoozbakht conjecture for primes up to four quintillion. Int. Math. Forum 2015, 10, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Kourbatov, A. Upper bounds for prime gaps related to Firoozbakht’s conjecture. J. Integer Seq. 2015, 18, 15.11.2. [Google Scholar]
- Kourbatov, A. Prime Gaps: Firoozbakht Conjecture. Updated March 2019. Available online: http://www.javascripter.net/math/primes/firoozbakhtconjecture.htm (accessed on 30 July 2019).
- Nicely, T.R. First Occurrence Prime Gaps. Updated March 2019. Available online: http://www.trnicely.net/gaps/gaplist.html (accessed on 30 July 2019).
- Nicely, T.R.; Nyman, B. New prime gaps between 1015 and 5 × 1016. J. Integer Seq. 2003, 6, 03.3.1. [Google Scholar]
- Oliveira e Silva, T.; Herzog, S.; Pardi, S. Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4 × 1018. Math. Comp. 2014, 83, 2033–2060. [Google Scholar] [CrossRef]
- For All of the Maximal Prime Gaps up to (80, , , ). Available online: https://en.wikipedia.org/wiki/Prime_gap (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (80, , , ). Available online: http://trnicely.net/#Maximal (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (75, , ). Available online: http://primerecords.dk/primegaps/maximal.htm (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (75, , ). Available online: https://primes.utm.edu/notes/GapsTable.html (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A005250 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A005250 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A002386 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A002386 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A005669 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A005669 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A000101 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A000101 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A107578 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A107578 (accessed on 30 July 2019).
- Nicholson, J.; See Sloane, N.J.A. Sequence A182514 in The On-Line Encyclopedia of Integer Sequences. Unpublished. 2013. Available online: https://oeis.org/A182514 (accessed on 30 July 2019).
- Farhadian, R. A New Conjecture on the Primes. Available online: https://www.primepuzzles.net/conjectures/Reza%20Faradian%20Conjecture.pdf (accessed on 30 July 2019).
- Farhadian, R.; Jakimczuk, R. On a new conjecture of prime numbers. Int. Math. Forum 2017, 12, 559–564. [Google Scholar] [CrossRef]
- Walisch, K. Primecount: A Program for Computing π(x). Available online: https://github.com/kimwalisch/primecount (accessed on 30 July 2019).
- Deleglise, M.; Rivat, J. Computing π(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 1996, 65, 235–245. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Miller, V.S.; Odlyzko, A.M. Computing π(x): The Meissel–Lehmer Method. Math. Comput. 1985, 44, 537–560. [Google Scholar] [CrossRef]
- Oliveira e Silva, T. Computing π(x): The combinatorial method. Rev. DETUA 2006, 4, 759–768. [Google Scholar]
- Skewes, S. On the Difference π(x) − li(x). J. Lond. Math. Soc. 1933, 8, 277–283. [Google Scholar] [CrossRef]
- Skewes, S. On the Difference π(x) − li(x). II. Proc. Lond. Math. Soc. 1955, 5, 48–70. [Google Scholar] [CrossRef]
- Lehman, R.S. On the Difference π(x) − li(x). Acta Arith. 1966, 11, 397–410. [Google Scholar] [CrossRef]
- Te Riele, H.J.J. On the Sign of the Difference π(x) − li(x). Math. Comput. 1987, 48, 323–328. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, M. Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics 2019, 7, 691. https://doi.org/10.3390/math7080691
Visser M. Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics. 2019; 7(8):691. https://doi.org/10.3390/math7080691
Chicago/Turabian StyleVisser, Matt. 2019. "Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap" Mathematics 7, no. 8: 691. https://doi.org/10.3390/math7080691
APA StyleVisser, M. (2019). Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics, 7(8), 691. https://doi.org/10.3390/math7080691