Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip
Abstract
:1. Introduction
2. Problem Formulation of Long and Circular Sliders
3. Homotopic Solution Procedure
Initial Order Deformation Problem
4. Convergence Criteria
5. Results and Discussion
6. Conclusions
- Slip near the ground reduces lateral velocity of the slider much more than slip. By increasing the magnetic parameter, the lateral velocity components decrease further.
- The behavior of velocity profiles is similar for the long and the circular sliders in cases of no-slip (i.e., parabolic or linear for a low Reynolds number).
- In cases of a large Reynolds number, a boundary layer formed near the surface, while velocity profiles decreased with an increase in slip parameters, a decrease which grew more pronounced after applying the magnetic field.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Magnetic field | Dynamic viscosity | ||
Width | Similarity variable | ||
Slip coefficient | Extra stress tensor | ||
Identity tensor | Slip factors | ||
Length | Velocity function | ||
Pressure | Velocity components | ||
Constant viscosity | Fluid density | ||
Space coordinates |
References
- Skalak, F.; Wang, C.-Y. Fluid Dynamics of a Long Porous Slider. J. Appl. Mech. 1975, 42, 893–894. [Google Scholar] [CrossRef]
- Wang, C.-Y. Erratum: “Fluid Dynamics of the Circular Porous Slider.” J. Appl. Mech. 1974, 41, 343–347. J. Appl. Mech. 1978, 45, 236. [Google Scholar] [CrossRef]
- Wang, C.-Y. The Elliptic Porous Slider at Low Crossflow Reynolds Numbers. J. Lubr. Technol. 1978, 100, 444. [Google Scholar] [CrossRef]
- Bhattacharjee, R.C.; Das, N.C. Porous slider bearing lubricated with couple stress mhd fluids. Trans. Can. Soc. Mech. Eng. 1994, 18, 317–331. [Google Scholar] [CrossRef]
- Patel, J.R.; Deheri, G. A study of thin film lubrication at nanoscale for a ferrofluid based infinitely long rough porous slider bearing. Facta Univ. Ser. Mech. Eng. 2016, 14, 89–99. [Google Scholar] [CrossRef]
- Sinha, P.; Adamu, G. Analysis of Thermal Effects in a Long Porous Rough Slider Bearing. Proc. Natl. Acad. Sci. India Sectoin A Phys. Sci. 2017, 87, 279–290. [Google Scholar] [CrossRef]
- Munshi, M.M.; Patel, A.R.; Deheri, G. Analysis of Rough Porous Inclined Slider Bearing Lubricated with a Ferrofluid Considering Slip Velocity. Int. J. Res. Advent Technol. 2019, 7, 387–396. [Google Scholar]
- Lang, J.; Nathan, R.; Wu, Q. Theoretical and experimental study of transient squeezing flow in a highly porous film. Tribol. Int. 2019, 135, 259–268. [Google Scholar] [CrossRef]
- Madalli, V.S.; Bujurke, N.M.; Mulimani, B.G. Lubrication of a long porous slider. Tribol. Int. 1995, 28, 225–232. [Google Scholar] [CrossRef]
- Awati, V.B.; Jyoti, M. Homotopy analysis method for the solution of lubrication of a long porous slider. Appl. Math. Nonlinear Sci. 2016, 1, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.; Faraz, N.; Yildirim, A.; Wu, Q. A Series Solution of the Long Porous Slider. Tribol. Trans. 2011, 54, 187–191. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q.; Faraz, N.; Mohyud-Dind, S.T.; Yıldırım, A. Three-Dimensional Flow Arising in the Long Porous Slider: An Analytic Solution. Z. Nat. A 2011, 66, 507–511. [Google Scholar]
- Faraz, N.; Khan, Y.; Lu, D.C.; Goodarzi, M. Integral transform method to solve the problem of porous slider without velocity slip. Symmetry 2019, 11, 791. [Google Scholar] [CrossRef]
- Ghoreishi, M.; Ismail, A.I.B.M.; Rashid, A. The One Step Optimal Homotopy Analysis Method to Circular Porous Slider. Math. Probl. Eng. 2012, 2012, 135472. [Google Scholar] [CrossRef]
- Shukla, S.D.; Deheri, G.M. Rough porous circular convex pad slider bearing lubricated with a magnetic fluid. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wang, C.Y. A porous slider with velocity slip. Fluid Dyn. Res. 2012, 44, 065505. [Google Scholar] [CrossRef]
- Wang, C.-Y. Fluid Dynamics of the Circular Porous Slider. J. Appl. Mech. 1974, 41, 343. [Google Scholar] [CrossRef]
- Faraz, N. Study of the effects of the Reynolds number on circular porous slider via variational iteration algorithm-II. Comput. Math. Appl. 2011, 61, 1991–1994. [Google Scholar] [CrossRef] [Green Version]
- Madani, M.; Khan, Y.; Mahmodi, G.; Faraz, N.; Yildirim, A.; Nasernejad, B. Application of homotopy perturbation and numerical methods to the circular porous slider. Int. J. Numer. Methods Heat Fluid Flow 2012, 22, 705–717. [Google Scholar] [CrossRef]
- Naeem, F.; Yasir, K. Thin film flow of an unsteady Maxwell fluid over a shrinking/stretching sheet with variable fluid properties. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1596–1612. [Google Scholar]
R | |||||
---|---|---|---|---|---|
0, 0 | 0 | 0.2 | 62.33 | 0.896 | 0.932 |
- | - | 0.5 | 26.34 | 0.760 | 0.836 |
- | - | 2.0 | 8.412 | 0.334 | 0.467 |
- | - | 5.0 | 4.917 | 0.063 | 0.123 |
- | - | 20 | 3.267 | 0 | 0 |
- | - | 50 | 2.909 | 0 | 0 |
0.1, 0.1 | 2 | 0.2 | 39.27 | 0.743 | 0.780 |
- | 4 | 0.5 | 16.78 | 0.626 | 0.704 |
- | 6 | 2.0 | 6.596 | 0.4372 | 0.2536 |
- | 10 | 5.0 | 3.436 | 0.3245 | 0 |
20 | 20.0 | 2.440 | 0.1520 | 0 | |
50 | 50.0 | 2.240 | 0 | 0 | |
0.1, 1 | 2 | 0.2 | 20.31 | 0.424 | 0.463 |
- | 4 | 0.5 | 8.859 | 0.357 | 0.436 |
- | 6 | 2.0 | 3.159 | 0.160 | 0.321 |
- | 10 | 5.0 | 2.050 | 0.035 | 0.123 |
20 | 20.0 | 1.513 | 0 | 0.0632 | |
50 | 50.0 | 1.391 | 0 | 0.012 | |
0.1, 10 | 2 | 0.2 | 5.316 | 0.064 | 0.082 |
- | 4 | 0.5 | 2.702 | 0.046 | 0.080 |
- | 6 | 2.0 | 1.413 | 0.013 | 0 |
- | 10 | 5.0 | 1.175 | 0.002 | 0 |
20 | 20.0 | 1.068 | 0 | 0 | |
50 | 50.0 | 1.047 | 0 | 0 | |
1, 1 | 2 | 0.2 | 9.727 | 0.275 | 0.315 |
- | 4 | 0.5 | 4.591 | 0.210 | 0.288 |
- | 6 | 2.0 | 2.048 | 0.068 | 0.172 |
10 | 5.0 | 1.569 | 0.011 | 0.047 | |
20 | 20.0 | 1.355 | 0 | 0 | |
50 | 50.0 | 1.315 | 0 | 0 |
R | ||||
---|---|---|---|---|
0, 0 | 0 | 0.2 | 30.78 | 0.914 |
- | - | 0.5 | 12.79 | 0.797 |
- | - | 2.0 | 3.833 | 0.392 |
- | - | 5.0 | 2.019 | 0.085 |
- | - | 20 | 1.349 | 0 |
- | - | 50 | 1.194 | 0 |
0.1, 0.1 | 2 | 0.2 | 19.33 | 0.761 |
- | 4 | 0.5 | 8.089 | 0.663 |
- | 6 | 2.0 | 2.503 | 0.310 |
- | 10 | 5.0 | 1.445 | 0.1014 |
20 | 20.0 | 0.994 | 0 | |
50 | 50.0 | 0.908 | 0 | |
0.1, 1 | 2 | 0.2 | 9.853 | 0.441 |
- | 4 | 0.5 | 4.130 | 0.394 |
- | 6 | 2.0 | 1.288 | 0.129 |
- | 10 | 5.0 | 0.752 | 0.0145 |
20 | 20.0 | 0.529 | 0 | |
50 | 50.0 | 0.483 | 0 | |
0.1, 10 | 2 | 0.2 | 6.438 | 0.084 |
- | 4 | 0.5 | 2.699 | 0.076 |
- | 6 | 2.0 | 0.841 | 0.015 |
- | 10 | 5.0 | 0.488 | 0 |
20 | 20.0 | 0.338 | 0 | |
50 | 50.0 | 0.305 | 0 | |
1, 1 | 2 | 0.2 | 4.611 | 0.294 |
- | 4 | 0.5 | 2.043 | 0.244 |
- | 6 | 2.0 | 0.776 | 0.0215 |
10 | 5.0 | 0.549 | 0 | |
20 | 20.0 | 0.466 | 0 | |
50 | 50.0 | 0.453 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraz, N.; Khan, Y.; Anjum, A.; Kahshan, M. Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics 2019, 7, 748. https://doi.org/10.3390/math7080748
Faraz N, Khan Y, Anjum A, Kahshan M. Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics. 2019; 7(8):748. https://doi.org/10.3390/math7080748
Chicago/Turabian StyleFaraz, Naeem, Yasir Khan, Amna Anjum, and Muhammad Kahshan. 2019. "Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip" Mathematics 7, no. 8: 748. https://doi.org/10.3390/math7080748
APA StyleFaraz, N., Khan, Y., Anjum, A., & Kahshan, M. (2019). Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics, 7(8), 748. https://doi.org/10.3390/math7080748