Neutrosophic Quadruple Vector Spaces and Their Properties
Abstract
:1. Introduction
2. Basic Concepts
- 1.
- A field of R or C or of scalars.
- 2.
- A set V of objects called vectors.
- 3.
- A rule (or operation) called vector addition; which associates with each pair of vectors in is in V, called sum of the vectors x and y in such a way that ;
- (a)
- (addition is commutative).
- (b)
- (addition is associative).
- (c)
- There is a unique vector 0 in V such that for all .
- (d)
- For each vector there is a unique vector such that
- (e)
- A rule or operation called scalar multiplication that associates with each scalar or C or and for a vector , called product denoted by `.’ of c and x in such a way that for and and ;
- i.
- for every .
- ii.
- iii.
- iv.
for all and in R or C or .
- A subset of a linearly independent set is linearly independent.
- Any set which contains a linearly dependent subset is linearly dependent.
- Any set which contains the zero vector (0 vector) is linearly dependent for 1.0 = 0.
- A set B is linearly independent if and only if each finite subset of B is linearly independent; that is if and only if there exist distinct vectors of B such that implies each .
3. Neutrosophic Quadruple Vector Spaces and Their Properties
- A subset of a NQ linearly independent set is NQ linearly independent.
- A set L of vectors in NQ is linearly independent if and only if for any distinct vectors of L; implies each , for
- 1.
- Every vector can be written in the form , where are in R (or C or ) not all zero with .
- 2.
- for and true for all varying in the set .
4. Neutrosophic Quadruple Linear Algebras over or or
5. Conclusions and Open Conjectures
- Is the NQ vector space V defined over R isomorphic to ?
- Is the NQ vector space W defined over C isomorphic to ?
- Is the NQ vector space U defined over isomorphic to ?
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NQ | Neutrosophic Quadruple |
References
- Smarandache, F. Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers. Neutrosophic Sets Syst. 2015, 10, 96–98. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29, 595–601. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras and Applications, 2nd ed.; Pons Publishing House: Brussels, Belgium, 2017; ISBN 978-1-59973-531-3. [Google Scholar]
- Zhang, X.H.; Smarandache, F.; Liang, X.L. Neutrosophic Duplet Semi-Group and Cancellable Neutrosophic Triplet Groups. Symmetry 2017, 9, 275. [Google Scholar] [CrossRef]
- Zhang, X.H.; Smarandache, F.; Ali, M.; Liang, X.L. Commutative neutrosophic triplet group and neutro-homomorphism basic theorem. Ital. J. Pure Appl. Math. 2017. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, X.H. The decomposition theorems of AG-neutrosophic extended triplet loops and strong AG-(l, l)-loops. Mathematics 2019, 7, 268. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Triplets in Neutrosophic Rings. Mathematics 2019, 7, 563. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Triplet Groups and Their Applications to Mathematical Modelling; EuropaNova: Brussels, Belgium, 2017; ISBN 978-1-59973-533-7. [Google Scholar]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. A Classical Group of Neutrosophic Triplet Groups Using {Z2p, ×}. Symmetry 2018, 10, 194. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic duplets of {Zpn, ×} and {Zpq, ×}. Symmetry 2018, 10, 345. [Google Scholar] [CrossRef]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Algebraic Structure of Neutrosophic Duplets in Neutrosophic Rings 〈Z ∪ I〉, 〈Q ∪ I〉 and 〈R ∪ I〉. Neutrosophic Sets Syst. 2018, 23, 85–95. [Google Scholar]
- Smarandache, F.; Zhang, X.; Ali, M. Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets. Symmetry 2019, 11, 171. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, X.Y.; Smarandache, F.; Hu, M.H. Left (right)-quasi neutrosophic triplet loops (groups) and generalized BE-algebras. Symmetry 2018, 10, 241. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, X.J.; Smarandache, F.; Jaíyéolá, T.G.; Liang, X.L. Singular neutrosophic extended triplet groups and generalized groups. Cognit. Syst. Res. 2018, 57, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Wu, X.Y.; Mao, X.Y.; Smarandache, F.; Park, C. On Neutrosophic Extended Triplet Groups (Loops) and Abel-Grassmann’s Groupoids (AG-Groupoids). J. Intell. Fuzzy Syst. 2019. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Q.; Smarandache, F.; An, X. On Neutrosophic Triplet Groups: Basic Properties, NT-Subgroups, and Some Notes. Symmetry 2018, 10, 289. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Yang, X.; Zhou, X. Generalized Neutrosophic Extended Triplet Group. Symmetry 2019, 11, 327. [Google Scholar] [CrossRef]
- Agboola, A.A.A. On Refined Neutrosophic Algebraic Structures. Neutrosophic Sets Syst. 2015, 10, 99–101. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Review 2010, 1, 10–15. [Google Scholar]
- Kandasamy, I. Double-Valued Neutrosophic Sets, their Minimum Spanning Trees, and Clustering Algorithm. J. Intell. Syst. 2018, 27, 163–182. [Google Scholar] [CrossRef]
- Kandasamy, I.; Smarandache, F. Triple Refined Indeterminate Neutrosophic Sets for personality classification. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Vasantha, W.B. Linear Algebra and Smarandache Linear Algebra; American Research Press: Ann Arbor, MI, USA, 2003; ISBN 978-1-931233-75-6. [Google Scholar]
- Vasantha, W.B.; Smarandache, F. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures; Hexis: Phoenix, AZ, USA, 2006; ISBN 978-1-931233-15-2. [Google Scholar]
- Vasantha, W.B.; Smarandache, F. Neutrosophic Rings; Hexis: Phoenix, AZ, USA, 2006; ISBN 978-1-931233-20-9. [Google Scholar]
- Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Semi-Idempotents in Neutrosophic Rings. Mathematics 2019, 7, 507. [Google Scholar] [CrossRef]
- Akinleye, S.A.; Smarandache, F.; Agboola, A.A.A. On neutrosophic quadruple algebraic structures. Neutrosophic Sets Syst. 2016, 12, 122–126. [Google Scholar]
- Agboola, A.A.A.; Davvaz, B.; Smarandache, F. Neutrosophic quadruple algebraic hyperstructures. Ann. Fuzzy Math. Inform. 2017, 14, 29–42. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Y.; Zhang, X.; Zhang, J. Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers. Symmetry 2019, 11, 696. [Google Scholar] [CrossRef]
- Jun, Y.; Song, S.Z.; Smarandache, F.; Bordbar, H. Neutrosophic quadruple BCK/BCI-algebras. Axioms 2018, 7, 41. [Google Scholar] [CrossRef]
- Muhiuddin, G.; Al-Kenani, A.N.; Roh, E.H.; Jun, Y.B. Implicative Neutrosophic Quadruple BCK-Algebras and Ideals. Symmetry 2019, 11, 277. [Google Scholar] [CrossRef]
- Jun, Y.B.; Song, S.-Z.; Kim, S.J. Neutrosophic Quadruple BCI-Positive Implicative Ideals. Mathematics 2019, 7, 385. [Google Scholar] [CrossRef]
- Jun, Y.B.; Smarandache, F.; Bordbar, H. Neutrosophic N-Structures Applied to BCK/BCI-Algebras. Information 2017, 8, 128. [Google Scholar] [CrossRef]
- Arena, P.; Baglio, S.; Fortuna, L.; Manganaro, G. Hyperchaos from cellular neural networks. Electron. Lett. 1995, 31, 250–251. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
W.B., V.K.; Kandasamy, I.; Smarandache, F. Neutrosophic Quadruple Vector Spaces and Their Properties. Mathematics 2019, 7, 758. https://doi.org/10.3390/math7080758
W.B. VK, Kandasamy I, Smarandache F. Neutrosophic Quadruple Vector Spaces and Their Properties. Mathematics. 2019; 7(8):758. https://doi.org/10.3390/math7080758
Chicago/Turabian StyleW.B., Vasantha Kandasamy, Ilanthenral Kandasamy, and Florentin Smarandache. 2019. "Neutrosophic Quadruple Vector Spaces and Their Properties" Mathematics 7, no. 8: 758. https://doi.org/10.3390/math7080758
APA StyleW.B., V. K., Kandasamy, I., & Smarandache, F. (2019). Neutrosophic Quadruple Vector Spaces and Their Properties. Mathematics, 7(8), 758. https://doi.org/10.3390/math7080758