Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Examples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leibniz, G.W. Letter from Hanover, Germany to G.F.A L’Hospital, September 30, 1695. In Leibniz Mathematische Schriften; Olms-Verlag: Hildesheim, Germany, 1962; pp. 301–302. [Google Scholar]
- Leibniz, G.W. Letter from Hanover, Germany, to Johann Bernoulli, December 28, 1695. In Leibniz Mathematische Schriften; Olms-Verlag: Hildesheim, Germany, 1962; p. 226. [Google Scholar]
- Leibniz, G.W. Letter from Hanover, Germany, to John Wallis, May 30, 1697. In Leibniz Mathematische Schriften; Olms-Verlag: Hildesheim, Germany, 1962; p. 25. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Bandle, C.; Gilányi, A.; Losonczi, L.; Páles, Z.; Plum, M. Inequalities and Applications: Conference on Inequalities and Applications, Noszvaj (Hungary), September 2007; Springer: Berlin/Heidelberg, Germany, 2008; p. 157. [Google Scholar]
- Bainov, D.D.; Simeonov, P.S. Integral Inequalities and Applications; Springer: Berlin/Heidelberg, Germany, 2013; p. 57. [Google Scholar]
- Corlay, S.; Lebovits, J.; Véhel, J.L. Multifractional stochastic volatility models. Math. Finance 2014, 24, 364–402. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- Magin, R.L.; Ingo, C.; Colon-Perez, L.; Triplett, W.; Mareci, T.H. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives an, entropy. Microporous Mesoporous Mater. 2013, 178, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Meral, F.; Royston, T.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Silva Costa, F.; Soares, J.C.S.; Gomez Plata, A.R.; Capelas de Oliveira, E. On the fractional Harry Dym equation. Comput. Appl. Math. 2018, 37, 2862–2876. [Google Scholar] [CrossRef]
- Silva Costa, F.; Contharteze Grigoletto, E.; Vaz, J., Jr.; Capelas de Oliveira, E. Slowing-down of neutrons: A fractional model. Commun. Appl. Ind. Math. 2015, 6. [Google Scholar] [CrossRef]
- Aljinević, A.A. Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. J. Math. Vol. 2014, 503195. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions. RGMIA Res. Rep. Coll. 2017, 20, 48. [Google Scholar]
- Dragomir, S.S. Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 2017, 20, 58. [Google Scholar]
- Dragomir, S.S. Further Ostrowski and Trapezoid type inequalities for Riemann-Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 2017, 20, 84. [Google Scholar]
- Anastassiou, G.M.; Hooshmandasl, R.; Ghasemi, A.; Moftakharzahed, F. Montgomery identities for fractional integrals and related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 97. [Google Scholar]
- Chen, F. Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals. J. Math. Inequal. 2016, 10, 75–81. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2013, 446, 1274–1291. [Google Scholar] [CrossRef]
- Iqbal, S.; Krulić, K.; Pečarić, J. Weighted Hardy-type inequalities for monotone convex functions with some applications. Fract. Differ. Calc. 2013, 3, 31–53. [Google Scholar] [CrossRef]
- Iqbal, S.; Krulić, K.; Pečarić, J. On refined Hardy-type inequalities with fractional integrals and fractional derivatives. Math. Slovaca 2014, 64, 879–892. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Krulić, K.; Pečarić, J. On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives. Rad Hazu. Mathematičke Znanosti 2014, 18=519, 91–106. [Google Scholar]
- Iqbal, S.; Pečarić, J.; Samraiz, M.; Tomovski, Z. Hardy-type inequalities for generalized fractional integral operators. Tbilisi Math. J. 2017, 10, 75–90. [Google Scholar] [CrossRef]
- Iqbal, S.; Pečarić, J.; Samraiz, M.; Tomovski, Z. On some Hardy-type inequalities for fractional calculus operators. Banach J. Math. Anal. 2017, 11, 438–457. [Google Scholar] [CrossRef]
- Jain, R.; Pathan, M.A. On Weyl fractional integral operators. Tamkang J. Math. 2004, 35, 169–173. [Google Scholar] [CrossRef]
- Nasibullin, R. Hardy-type inequalities for fractional integrals and derivatives of Riemann-Liouville. Lobachevskii J. Math. 2017, 38, 709–718. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Budak, H. New inequalities of Opial type for conformable fractional integrals. Turk. J. Math. 2017, 41, 1164–1173. [Google Scholar] [CrossRef]
- Set, E.; İscan, I.; Sarıkaya, M.Z.S.; Özdemir, M.E. On new inequalities of Hermite-Hadamard Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Fekan, M.; Zhou, Y. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives; Mathematics and its Applications (East European Series), 53; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1991. [Google Scholar]
- Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
- Alomari, M.; Darus, M. Some Ostrowski type inequalities for convex functions with applications. RGMIA 2010, 13, 3. [Google Scholar]
- Farid, G. Straightforward proofs of Ostrowski inequality and some related results. Int. J. Anal. 2016, 2016, 3918483. [Google Scholar] [CrossRef]
- Yue, H. Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 2013, 5, 85–89. [Google Scholar]
- Khan, M.A.; Begum, S.; Khurshid, Y.; Chu, Y.-M. Ostrowski type inequalities involving conformable fractional integral. J. Inequal. Appl. 2018, 2018, 70. [Google Scholar] [CrossRef]
- Liu, W. Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions. J. Comput. Anal. Appl. 2012, 16, 998–1004. [Google Scholar]
- Set, E. New inequalities for Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- Tunç, M. Ostrowski type inequalities via h-convex functions with applications for special means. J. Inequal. Appl. 2013, 2013, 326. [Google Scholar] [CrossRef]
- Vanterler da, C.; Sousa, J. Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Vanterler da, C.; Sousa, J.; Capelas de Oliveira, E. A Gronwall inequality and the Cauchy-type problem by means of ψ- Hilfer operator. Differ. Equ. Appl. 2019, 11, 87–106. [Google Scholar] [CrossRef]
- Yaldız, H.; Set, E. Some new Ostrowski type inequalities for generalized fractional integrals. AIP Conf. Proc. 2018, 1991, 020018. [Google Scholar] [CrossRef]
- Yıldırım, H.; Kırtay, Z. Ostrowski inequality for generalized fractional integral and related inequalities. Malaya J. Mat. 2014, 2, 322–329. [Google Scholar]
- Yıldız, Ç.; Özdemir, M.E.; Sarıkaya, M.Z. New generalizations of Ostrowski-Like type inequalities for fractional integral. Kyungpook Math. J. 2016, 56, 161–172. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basci, Y.; Baleanu, D. Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals. Mathematics 2019, 7, 770. https://doi.org/10.3390/math7090770
Basci Y, Baleanu D. Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals. Mathematics. 2019; 7(9):770. https://doi.org/10.3390/math7090770
Chicago/Turabian StyleBasci, Yasemin, and Dumitru Baleanu. 2019. "Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals" Mathematics 7, no. 9: 770. https://doi.org/10.3390/math7090770
APA StyleBasci, Y., & Baleanu, D. (2019). Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals. Mathematics, 7(9), 770. https://doi.org/10.3390/math7090770