Some Identities of Degenerate Bell Polynomials
Abstract
:1. Introduction
2. Some Identities of Degenerate Bell Polynomials
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- El-Desouky, B.S. A generation of Stirling, Lah and harmonic numbers with some computational applications. Ars Combin. 2017, 130, 333–356. [Google Scholar]
- El-Desouky, B.S. The multiparameter non-central Stirling numbers. Fibonacci Quart. 1994, 32, 218–225. [Google Scholar]
- He, Y.; Pan, J. Some recursion formulae for the number of derangements and Bell numbers. J. Math. Res. Appl. 2016, 36, 15–22. [Google Scholar]
- Howard, F.T. Bell polynomials and degenerate Stirling numbers. Rend. Semin. Math. Univ. Padova 1979, 61, 203–219. [Google Scholar]
- Kilar, N.; Simsek, Y. Relations on Bernoulli and Euler polynomials related to trigonometric functions. Adv. Stud. Contemp. Math. (Kyungshang) 2019, 29, 191–198. [Google Scholar]
- Kim, D.S.; Kim, T. Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 621–636. [Google Scholar]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V. On partially degenerate Bell numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 337–345. [Google Scholar]
- Kim, T.; Kim, D.S.; Lee, H.; Kwon, J. A note on some identities of new type degenerate Bell polynomials. Mathematics 2019, 7, 1086. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Yao, Y.; Kim, D.S.; Kwon, H.-I. Some identities involving special numbers and moments of random variables. Rocky Mt. J. Math. 2019, 49, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The Umbral Calculus, Pure and Applied Mathematics; Academic Press, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Simsek, Y. Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 127–135. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Some Identities of Degenerate Bell Polynomials. Mathematics 2020, 8, 40. https://doi.org/10.3390/math8010040
Kim T, Kim DS, Kim HY, Kwon J. Some Identities of Degenerate Bell Polynomials. Mathematics. 2020; 8(1):40. https://doi.org/10.3390/math8010040
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Han Young Kim, and Jongkyum Kwon. 2020. "Some Identities of Degenerate Bell Polynomials" Mathematics 8, no. 1: 40. https://doi.org/10.3390/math8010040
APA StyleKim, T., Kim, D. S., Kim, H. Y., & Kwon, J. (2020). Some Identities of Degenerate Bell Polynomials. Mathematics, 8(1), 40. https://doi.org/10.3390/math8010040