Generalized-Fractional Tikhonov-Type Method for the Cauchy Problem of Elliptic Equation
Abstract
:1. Introduction
2. Conditional Stability
3. Regularization Method
3.1. Regularization Method for Problem (4)
3.2. Regularization Method for Problem (5)
4. Preparation Knowledge
5. Convergence Estimate
5.1. The Estimate of Convergence for the Method in (4)
5.1.1. The Estimate of a-Priori Convergence
5.1.2. The Estimate of a-Posteriori Convergence
5.2. The Estimate of Convergence for the Method in (5)
5.2.1. The Estimate of a-Priori Convergence
5.2.2. The Estimate of a-Posteriori Convergence
6. Numerical Experiments
7. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kaup, P.G.; Santosa, F. Nondestructive evaluation of corrosion damage using electrostatic measurements. J. Nondestruct. Eval. 1995, 14, 127–136. [Google Scholar] [CrossRef]
- McIver, M. An inverse problem in electromagnetic crack detection. IMA J. Appl. Math. 1991, 47, 127–145. [Google Scholar] [CrossRef]
- Stefanesco, S.; Schlumberger, C.; Schlumberger, M. Sur la distribution électrique potentielle autour d’uneprise de terre ponctuelle dans un terrain à couches horizontales, homogènes et isotropes. J. Phys. Radium 1930, 1, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Colli Franzone, P.; Guerri, L.; Tentoni, S.; Viganotti, C.; Baruffi, S.; Spaggiari, S.; Taccardi, B. A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math. Biosci. 1985, 77, 353–396. [Google Scholar] [CrossRef]
- Alessandrini, G.; Rondi, L.; Rosset, E.; Vessella, S. The stability for the Cauchy problem for elliptic equations. Inverse Probl. 2009, 25, 123004. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, F.B. Why is the Cauchy problem severely ill-posed? Inverse Probl. 2007, 23, 823. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, X.L.; Fu, C.L. A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case. Inverse Probl. Sci. Eng. 2010, 18, 971–982. [Google Scholar] [CrossRef]
- Bouzitouna, A.; Boussetila, N.; Rebbani, F. Two regularization methods for a class of inverse boundary value problems of elliptic type. Bound. Value Probl. 2013, 2013, 178. [Google Scholar] [CrossRef] [Green Version]
- Eldén, L.; Berntsson, F. A stability estimate for a Cauchy problem for an elliptic partial differential equation. Inverse Probl. 2009, 21, 1643–1653. [Google Scholar]
- Eldén, L.; Simoncini, V. A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces. Inverse Probl. 2009, 25, 065002. [Google Scholar]
- Feng, X.L.; Eldén, L.; Fu, C.L. A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous neumann data. J. Inverse -Ill-Posed Probl. 2010, 18, 617–645. [Google Scholar] [CrossRef]
- Feng, X.L.; Ning, W.T.; Qian, Z. A quasi-boundary-value method for a Cauchy problem of an elliptic equation in multiple dimensions. Inverse Probl. Sci. Eng. 2014, 22, 1045–1061. [Google Scholar] [CrossRef]
- Hào, D.N.; Duc, N.V.; Lesnic, D. A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 2009, 25, 055002. [Google Scholar]
- Tautenhahn, U. Optimal stable solution of Cauchy problems of elliptic equations. J. Anal. Its Appl. 1996, 15, 961–984. [Google Scholar] [CrossRef]
- Tautenhahn, U.; Hämarik, U.; Hofmann, B.; Shao, Y. Conditional stability estimates for ill-posed pdeproblems by using interpolation. Numer. Funct. Anal. Optim. 2013, 34, 1370–1417. [Google Scholar] [CrossRef] [Green Version]
- Tuan, N.H.; Trong, D.D.; Quan, P.H. A note on a Cauchy problem for the Laplace equation: Regularization and error estimates. Appl. Math. Comput. 2010, 217, 2913–2922. [Google Scholar] [CrossRef]
- Zhao, J.J.; Liu, S.S.; Liu, T. A new regularization method for cauchy problem of elliptic equation. Complex Var. Elliptic Equations 2014, 59, 1302–1314. [Google Scholar] [CrossRef]
- Hochstenbach, M.E.; Reichel, L. Fractional Tikhonov regularization for linear discrete ill-posed problems. BIT Numer. Math. 2011, 51, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Yamamoto, M. One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 2000, 16, L31–L38. [Google Scholar] [CrossRef]
- Payne, L.E. Bounds in the Cauchy problem for the Laplace equation. Arch. Ration. Mech. Anal. 1960, 5, 35–45. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems, Volume 375 of Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems, Volume 120 of Applied Mathematical Sciences; Springer: New York, NY, USA, 1996. [Google Scholar]
- Feng, X.L.; Fu, C.L.; Cheng, H. A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 2011, 35, 3301–3315. [Google Scholar] [CrossRef]
- Qin, H.H.; Wei, T. Two regularization methods for the Cauchy problems of the Helmholtz equation. Appl. Math. Model. 2010, 34, 947–967. [Google Scholar] [CrossRef]
- Morozov, V.A.; Nashed, Z.; Aries, A.B. Methods for Solving Incorrectly Posed Problems; Springer: New York, NY, USA, 1984. [Google Scholar]
- Egger, H.; Hofmann, B. Tikhonov regularization in Hilbert scales under conditional stability assumptions. Inverse Probl. 2018, 34, 115015. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, B.; Mathe, P. Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales. Inverse Probl. 2017, 34, 015007. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, B.; Kaltenbacher, B.; Resmerita, E. Lavrentiev’s regularization method in Hilbert spaces revisited. Inverse Probl. Imaging 2017, 10, 741–764. [Google Scholar] [CrossRef] [Green Version]
- Plato, R.; Mathé, P.; Hofmann, B. Optimal rates for lavrentiev regularization with adjoint source conditions. Math. Comput. 2017, 87, 785–801. [Google Scholar] [CrossRef]
- Chen, D.H.; Hofmann, B.; Zou, J. Regularization and convergence for ill-posed backward evolution equations in Banach spaces. J. Differ. Equations 2018, 265, 3533–3566. [Google Scholar] [CrossRef]
q | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
0.0442 | 0.0441 | 0.0439 | 0.0438 | 0.0438 | 0.0438 | 0.0438 | |
0.0487 | 0.0481 | 0.0480 | 0.0480 | 0.0480 | 0.0480 | 0.0480 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
0.0440 | 0.0439 | 0.0438 | 0.0438 | 0.0438 | 0.0438 | 0.0438 | |
0.0482 | 0.0480 | 0.0480 | 0.0480 | 0.0480 | 0.0480 | 0.0480 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, X. Generalized-Fractional Tikhonov-Type Method for the Cauchy Problem of Elliptic Equation. Mathematics 2020, 8, 48. https://doi.org/10.3390/math8010048
Zhang H, Zhang X. Generalized-Fractional Tikhonov-Type Method for the Cauchy Problem of Elliptic Equation. Mathematics. 2020; 8(1):48. https://doi.org/10.3390/math8010048
Chicago/Turabian StyleZhang, Hongwu, and Xiaoju Zhang. 2020. "Generalized-Fractional Tikhonov-Type Method for the Cauchy Problem of Elliptic Equation" Mathematics 8, no. 1: 48. https://doi.org/10.3390/math8010048
APA StyleZhang, H., & Zhang, X. (2020). Generalized-Fractional Tikhonov-Type Method for the Cauchy Problem of Elliptic Equation. Mathematics, 8(1), 48. https://doi.org/10.3390/math8010048