Coefficient Estimates for a Subclass of Starlike Functions
Abstract
:1. Introduction
2. Preliminary Results
3. Main Results
4. Conclusions
Funding
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983. [Google Scholar]
- Silverman, H. Convex and starlike criteria. Int. J. Math. Math. Sci. 1999, 22, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Tuneski, N. On the starlike criteria defined by Silverman. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 2000, 24, 59–64. [Google Scholar]
- Hayman, W.K. On successive coefficients of univalent functions. J. Lond. Math. Soc. 1963, 38, 228–243. [Google Scholar] [CrossRef]
- Leung, Y. Successive coefficients of starlike functions. Bull. Lond. Math. Soc. 1978, 10, 193–196. [Google Scholar] [CrossRef]
- Pommerenke, C. Probleme aus der Funktionen theorie. Jber. Deutsch. Math. Verein. 1971, 73, 1–5. [Google Scholar]
- Ye, Z. On successive coefficients of close-to-convex functions. J. Math. Anal. Appl. 2003, 283, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z. On successive coefficients of odd univalent functions. Proc. Am. Math. Soc. 2005, 133, 3355–3360. [Google Scholar]
- Zaprawa, P. Successive coefficients for close-to-convex functions. Forum Math. 2020, 32, 1131–1141. [Google Scholar]
- Robertson, M.S. Univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 1981, 81, 327–345. [Google Scholar]
- Li, M.; Sugawa, T. A note on successive coefficients of convex functions. Comput. Methods Funct. Theory 2017, 17, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Obradović, M. The estimate of the difference of initial successive coefficients of univalent functions. J. Math. Inequal. 2019, 13, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, Z.-G.; Su, R.-L.; Arif, M. Initial successive coefficients for certain classes of univalent functions involving the exponential function. arXiv 2020, arXiv:2003.09771v1. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramanian, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel determinants for new subclasses of analytic functions related to a shell shaped region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Zaprawa, P. Second Hankel determinants for the class of typically real functions. Abstr. Appl. Anal. 2016, 2016, 3792367. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kumar, V.; Cho, N.E. Sharp coefficient bounds for the quotient of analytic functions. Kyungpook Math. J. 2018, 58, 231–242. [Google Scholar]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Efraimidis, J.; Vukotić, D. Applications of Livingstone-type inequalities to the generalized Zalcman functional. Math. Nachr. 2018, 291, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Sharp estimates of generalized Zalcman functional of early coefficients for Ma-Minda type functions. Filomat 2018, 32, 6267–6280. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Tuneski, N. Zalcman and generalized Zalcman conjecture for the class U. arXiv 2020, arXiv:2005.14301v2. [Google Scholar]
- Ravichandran, V.; Verma, S. Generalized Zalcman conjecture for some class of analytic functions. J. Math. Anal. Appl. 2017, 450, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Tra̧bka-Wiȩclaw, K.; Zaprawa, P.; Gregorczyk, M.; Rysak, A. On the Fekete-Szegö type functionals for close-to-convex functions. Symmetry 2019, 11, 1497. [Google Scholar] [CrossRef] [Green Version]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Ohno, R.; Sugawa, T. Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions. Kyoto J. Math. 2018, 58, 227–241. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Răducanu, D. Coefficient Estimates for a Subclass of Starlike Functions. Mathematics 2020, 8, 1646. https://doi.org/10.3390/math8101646
Răducanu D. Coefficient Estimates for a Subclass of Starlike Functions. Mathematics. 2020; 8(10):1646. https://doi.org/10.3390/math8101646
Chicago/Turabian StyleRăducanu, Dorina. 2020. "Coefficient Estimates for a Subclass of Starlike Functions" Mathematics 8, no. 10: 1646. https://doi.org/10.3390/math8101646
APA StyleRăducanu, D. (2020). Coefficient Estimates for a Subclass of Starlike Functions. Mathematics, 8(10), 1646. https://doi.org/10.3390/math8101646