A Note on Geodesic Vector Fields
Abstract
:1. Introduction
2. Preliminaries
3. A Characterization of Concircular Vector Fields
4. Characterizing n-Spheres
5. A Characterization of Euclidean Spaces
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, B.-Y.; Nagano, T. Harmonic metrics, harmonic tensors and Gauss maps. J. Math. Soc. Jpn. 1984, 36, 295–313. [Google Scholar] [CrossRef]
- Sharma, R. Some results on almost Ricci solitons and geodesic vector fields. Beitr. Algebra Geom. 2018, 59, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Nagano, T. On geodesic vector fields in a compact orientable Riemannian space. Comment. Math. Helv. 1961, 35, 55–64. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Deshmukh, S.; Ishan, A.A. On Jacobi-type vector fields on Riemannian manifolds. Mathematics 2019, 7, 1139. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S. Jacobi-type vector fields and Ricci solitons. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 41–50. [Google Scholar]
- Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52, 1535–1547. [Google Scholar] [CrossRef] [Green Version]
- Fialkow, A. Conformal geodesics. Trans. Am. Math. Soc. 1939, 45, 443–473. [Google Scholar] [CrossRef]
- Mosayebi, P.; Kobzas, D.; Murtha, A.; Jagersand, M. Tumor invasion margin on Riemannian space of brain fibers. Med. Image Anal. 2012, 16, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Takeno, H. Concircular scalar field in spherically symmetric space-times I. Tensor (N. S.) 1967, 20, 167–176. [Google Scholar]
- Chen, B.-Y.; Verstraelen, L. A link between torse-forming vector fields and rotational hypersurfaces. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750177. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. Twisted Lorentzian manifolds: A characterization with torse-forming time-like unit vectors. Gen. Relativ. Gravit. 2017, 49, 51. [Google Scholar] [CrossRef] [Green Version]
- Mihai, A.; Mihai, I. Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications. J. Geom. Phys. 2013, 73, 200–208. [Google Scholar] [CrossRef]
- Yano, K. On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 1944, 20, 340–346. [Google Scholar] [CrossRef]
- Berestovskii, V.; Nikonorov, Y. Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 2008, 49, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Flores, J.L.; Javaloyes, M.A.; Piccione, P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Math. Z. 2011, 267, 221–233. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, D. The geodesic completeness of compact Lorentzian manifolds admitting a timelike Killing vector field revisited: Two new proofs. Publ. Inst. Math. (Beograd) (N. S.) 2018, 104, 121–125. [Google Scholar]
- Lynge, W.C. Sufficient conditions for periodicity of a Killing vector field. Proc. Am. Math. Soc. 1973, 38, 614–616. [Google Scholar] [CrossRef]
- Rong, X. Positive curvature, local and global symmetry, and fundamental groups. Am. J. Math. 1999, 121, 931–943. [Google Scholar] [CrossRef]
- Yorozu, S. Killing vector fields on complete Riemannian manifolds. Proc. Am. Math. Soc. 1982, 84, 115–120. [Google Scholar] [CrossRef]
- Yorozu, S. Killing vector fields on noncompact Riemannian manifolds with boundary. Kodai Math. J. 1982, 5, 426–433. [Google Scholar] [CrossRef]
- Alías, L.J.; de Lira, J.H.; Rigoli, M. Mean curvature flow solitons in the presence of conformal vector fields. J. Geom. Anal. 2020, 30, 1466–1529. [Google Scholar] [CrossRef] [Green Version]
- Diógenes, R.; Ribeiro, E., Jr.; Silva Filho, J. Gradient Ricci solitons admitting a closed conformal vector field. J. Math. Anal. Appl. 2017, 455, 1975–1983. [Google Scholar] [CrossRef]
- Obata, M. Conformal transformations of Riemannian manifolds. J. Diff. Geom. 1970, 4, 311–333. [Google Scholar] [CrossRef]
- Obata, M. The conjectures about conformal transformations. J. Diff. Geom. 1971, 6, 247–258. [Google Scholar] [CrossRef]
- Brinkmann, H.W. Einstein spaces which mapped conformally on each other. Math. Ann. 1925, 94, 119–145. [Google Scholar] [CrossRef]
- Mikes, J.; Stepanova, E.; Vanzurova, E. Differential Geometry of Special Mappings; Palacký University Press: Olomouc, Czech Republic, 2015. [Google Scholar]
- Hinterleitner, I. Holomorphically projective mappings of (pseudo-) Kähler manifolds preserve the class of differentiability. Filomat 2016, 30, 3115–3122. [Google Scholar] [CrossRef] [Green Version]
- Mikeš, J. Holomorphically projective mappings and their generalizations. J. Math. Sci. (N. Y.) 1998, 89, 1334–1353. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Velimirović, L.S. Generalized almost Hermitian spaces and holomorphically projective mappings. Mediterr. J. Math. 2020, 17, 74. [Google Scholar] [CrossRef]
- Deshmukh, S.; Khan, V.A. Geodesic vector fields and Eikonal equation on a Riemannian manifold. Indag. Math. 2019, 30, 542–552. [Google Scholar] [CrossRef]
- Deshmukh, S.; Peska, P.; Turki, N.B. Geodesic vector fields on a Riemannian manifold. Mathematics 2020, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Besse, A.L. Einstein Manifolds; Springer: London, UK, 1987. [Google Scholar]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: London, UK, 1983. [Google Scholar]
- Pigola, S.; Rimoldi, M.; Setti, A.G. Remarks on non-compact gradient Ricci solitons. Math. Z. 2011, 268, 777–790. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Mikeš, J.; Turki, N.B.; Vîlcu, G.-E. A Note on Geodesic Vector Fields. Mathematics 2020, 8, 1663. https://doi.org/10.3390/math8101663
Deshmukh S, Mikeš J, Turki NB, Vîlcu G-E. A Note on Geodesic Vector Fields. Mathematics. 2020; 8(10):1663. https://doi.org/10.3390/math8101663
Chicago/Turabian StyleDeshmukh, Sharief, Josef Mikeš, Nasser Bin Turki, and Gabriel-Eduard Vîlcu. 2020. "A Note on Geodesic Vector Fields" Mathematics 8, no. 10: 1663. https://doi.org/10.3390/math8101663
APA StyleDeshmukh, S., Mikeš, J., Turki, N. B., & Vîlcu, G. -E. (2020). A Note on Geodesic Vector Fields. Mathematics, 8(10), 1663. https://doi.org/10.3390/math8101663