New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme
Abstract
:1. Introduction
2. Weighted Least Squares Estimation
3. Application
3.1. Simulation Result
3.2. Real Data
- (a)
- Compute the estimates of and .
- (b)
- Generate from the marginal density function with the estimates obtained in (a), where
- (c)
- Repeat 10,000), (b).
- (a)
- Compute the estimates of and .
- (b)
- Compute = with the estimates obtained in (a).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pareek, B.; Kundu, D.; Kumar, S. On progressively censored competing risks data for Weibull distributions. Comput. Stat. Data Anal. 2009, 53, 4083–4094. [Google Scholar] [CrossRef]
- Wang, B.X.; Yu, K.; Jones, M.C. Inference under progressively Type-II right-censored sampling for certain lifetime distributions. Technometrics 2010, 52, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, A.H.; Al-Hussaini, E.K. Inference for a progressive stress model from Weibull distribution under progressive Type-II censoring. J. Comput. Appl. Math. 2011, 235, 5259–5271. [Google Scholar] [CrossRef] [Green Version]
- Valiollahi, R.; Asgharzadeh, A.; Raqab, M.Z. Estimation of P(Y<X) for Weibull distribution under progressive Type-II censoring. Commun. Stat.-Theory Methods 2013, 42, 4476–4498. [Google Scholar]
- Lu, H.L.; Tao, S.H. The estimation of Pareto distribution by a weighted least square method. Qual. Quant. 2007, 41, 913–926. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Lee, K.; Sun, H.; Cho, Y. Exact likelihood inference of the exponential parameter under generalized Type-II progressive hybrid censoring. J. Korean Stat. Soc. 2016, 45, 123–136. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
- Abd-Elfattah, A.M. Goodness of fit test for the generalized Rayleigh distribution with unknown parameters. J. Stat. Comput. Simul. 2011, 81, 357–366. [Google Scholar] [CrossRef]
- Zhang, Z.; Gui, W. Statistical inference of reliability of Generalized Rayleigh distribution under progressively Type-II censoring. J. Comput. Appl. Math. 2019, 361, 295–312. [Google Scholar] [CrossRef]
2 | 2 | 2.5 | 2.5 | 2.6 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 3.3 | 3.3 | 3.4 | 3.5 |
3.7 | 3.8 | 3.8 | 3.9 | 4 | 4 | 4.1 | 4.1 | 4.7 | 5.3 | 5.4 | 5.5 | 5.7 | 6.7 | 6.9 |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2.7 | 2.8 | 2.9 | 3.2 | 3.3 | 3.3 | 3.4 | 3.5 | 3.9 | 4 | 4.7 | 5.3 | 5.4 | 5.5 | 5.7 | 6.7 | 6.9 | |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
3.2694 | 2.7791 | 2.6553 | 2.7205 | 0.0039 | 0.0084 | 0.0103 | 0.0097 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-I.; Jeon, Y.E.; Kang, S.-B. New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme. Mathematics 2020, 8, 1713. https://doi.org/10.3390/math8101713
Seo J-I, Jeon YE, Kang S-B. New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme. Mathematics. 2020; 8(10):1713. https://doi.org/10.3390/math8101713
Chicago/Turabian StyleSeo, Jung-In, Young Eun Jeon, and Suk-Bok Kang. 2020. "New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme" Mathematics 8, no. 10: 1713. https://doi.org/10.3390/math8101713
APA StyleSeo, J. -I., Jeon, Y. E., & Kang, S. -B. (2020). New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme. Mathematics, 8(10), 1713. https://doi.org/10.3390/math8101713