Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term
Abstract
:1. Introduction and Main Results
2. Preliminaries
- (i)
- .
- (ii)
- If, then.
- (iii)
- If, then
- (1)
- Ifandfor every, then the embedding fromtois continuous and compact.
- (2)
- The Poincare’s inequality inholds, that is, there is a constantsuch that
- (i)
- to satisfy the -property if in X and imply in X;
- (ii)
- pseudomonotone if in X and imply and .
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2000; Volume 1748. [Google Scholar]
- Rajagopal, K.R.; Ruzicka, M. Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
- Halsey, T.C. Electrorheological fluids. Science 1992, 258, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 1987, 9, 33–66. [Google Scholar] [CrossRef]
- Chen, Y.M.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Tiirola, J. Image decompositions using spaces of variable smoothness and integrability. SIAM J. Imaging Sci. 2014, 7, 1558–1587. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Shi, K.H.; Guo, Z.C.; Wu, B.Y. A class of elliptic systems with discontinuous variable exponents and data for image denoising. Nonlinear Anal. Real World Appl. 2019, 50, 448–468. [Google Scholar] [CrossRef]
- Cekic, B.; Kalinin, A.V.; Mashiyev, R.; Avci, M. Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl. 2012, 389, 838–851. [Google Scholar] [CrossRef]
- Kefi, K.; Radulescu, V.D. On a p(x)-biharmonic problem with singular weights. Z. Angew. Math. Phys. 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Saoudi, K. The fibering map approach to a p(x)-Laplacian equation with singular nonlinearities and nonlinear Neumann boundary conditions. Rocky Mt. J. Math. 2018, 48, 927–946. [Google Scholar] [CrossRef]
- Kefi, K.; Saoudi, K. On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions. Adv. Nonlinear Anal. 2019, 8, 1171–1183. [Google Scholar] [CrossRef]
- Xie, W.L.; Chen, H.B. Existence and multiplicity of solutions for p(x)-Laplacian equations in ℝN. Math. Nachr. 2018, 291, 2476–2488. [Google Scholar] [CrossRef]
- Nhan, L.C.; Chuong, Q.V.; Truong, L.X. Potential well method for p(x)-Laplacian equations with variable exponent sources. Nonlinear Anal. Real World Appl. 2020, 56, 103155. [Google Scholar] [CrossRef]
- Zhang, X. A minimization problem with variable growth on Nehari manifold. Monatsh. Math. 2016, 181, 485–500. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Motreanu, D. Existence and blow-up rate of large solutions of p(x)-Laplacian equations with large perturbation and gradient terms. Adv. Differ. Equ. 2016, 21, 699–734. [Google Scholar]
- Yucedag, Z. Solutions of nonlinear problems involving p(x)-Laplacian operator. Adv. Nonlinear Anal. 2015, 4, 285–293. [Google Scholar] [CrossRef]
- Yin, J.X.; Li, J.K.; Ke, Y.Y. Existence of positive solutions for the p(x)-Laplacian equation. Rocky Mt. J. Math. 2012, 42, 1675–1758. [Google Scholar] [CrossRef]
- Hammou, M.A.; Azroul, E.; Lahmi, B. Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree. Bull. Transilv. Univ. Bras. Ser. III 2018, 11, 29–38. [Google Scholar]
- Ayazoglu, R.; Ekincioglu, I. Electrorheological fluids equations involving variable exponent with dependence on the gradient via mountain pass techniques. Numer. Funct. Anal. Optim. 2016, 37, 1144–1157. [Google Scholar]
- Ge, B.; Wang, L.Y. Infinitely many solutions for a class of superlinear problems involving variable exponents. Adv. Differ. Equ. 2020, 25, 191–212. [Google Scholar]
- Ge, B.; Lv, D.J. Superlinear elliptic equations with variable exponent via perturbation method. Acta Appl. Math. 2020, 166, 85–109. [Google Scholar] [CrossRef]
- Ge, B. Vicentiu D. Radulescu, Infinitely many solutions for a non-homogeneous differential inclusion with lack of compactness. Adv. Nonlinear Stud. 2019, 19, 625–637. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Afrouzi, G.A.; Moradi, S.; Caristi, G.; Ge, B. Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 2016, 67, 1–13. [Google Scholar] [CrossRef]
- Ge, B.; Zhou, Q.M.; Wu, Y.H. Eigenvalues of the p(x)-biharmonic operator with indefinite weight. Z. Angew. Math. Phys. 2015, 66, 1007–1021. [Google Scholar] [CrossRef]
- Fan, X.L. Existence and uniqueness for the p(x)-Laplacian Dirichlet problems. Math. Nachr. 2011, 284, 1435–1445. [Google Scholar] [CrossRef]
- Fan, X.L. Global C1,α regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 2007, 235, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.Y.; Zhang, C.; Zhou, S.L. On optimal C1,α estimates for p(x)-Laplace type equations. Nonlinear Anal. 2020, 200, 112030. [Google Scholar] [CrossRef]
- Ok, J. Harnack inequality for a class of functionals with non-standard growth via De Giorgi’s method. Adv. Nonlinear Anal. 2018, 7, 167–182. [Google Scholar] [CrossRef]
- Yao, F.P. Local Holder estimates for non-uniformly variable exponent elliptic equations in divergence form. Proc. R. Soc. Edinb. Sect. A 2018, 148, 211–224. [Google Scholar] [CrossRef]
- Byun, S.S.; Ok, J.; Park, J. Regularity estimates for quasilinear elliptic equations with variable growth involving measure data. Ann. Inst. Henri Poincare Anal. Non Lineaire 2017, 34, 1639–1667. [Google Scholar] [CrossRef]
- Byun, S.S.; Ok, J.; Ryu, S. Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity. J. Reine Angew. Math. 2016, 715, 1–38. [Google Scholar] [CrossRef]
- Byun, S.S.; Lee, M.; Ok, J. W2,p(x)-regularity for elliptic equations in nondivergence form with BMO coefficients. Math. Ann. 2015, 363, 1023–1052. [Google Scholar] [CrossRef]
- Baroni, P.; Habermann, J. Elliptic interpolation estimates for non-standard growth operators. Ann. Acad. Sci. Fenn. Math. 2014, 39, 119–162. [Google Scholar] [CrossRef]
- Giannetti, F.; di Napoli Passarelli, A. Regularity results for a new class of functionals with non-standard growth conditions. J. Differ. Equ. 2013, 254, 1280–1305. [Google Scholar] [CrossRef]
- Harjulehto, P.; Hasto, P.; Latvala, V.; Toivanen, O. The strong minimum principle for quasisuperminimizers of non-standard growth. Ann. Inst. Henri Poincare Anal. Non Lineaire 2011, 28, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Adamowicz, T.; Hasto, P. Harnack’s inequality and the strong p(·)-Laplacian. J. Differ. Equ. 2011, 250, 1631–1649. [Google Scholar] [CrossRef]
- Montenegro, M.; Montenegro, M. Existence and nonexistence of solutions for quasilinear elliptic equations. J. Math. Anal. Appl. 2000, 245, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D. A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equ. 2004, 199, 96–114. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.H. A priori estimates and existence for quasi-linear elliptic equations. Calc. Var. Partial Differ. Equ. 2008, 33, 417–437. [Google Scholar] [CrossRef]
- Figueiredo, G.M. Quasilinear equations with dependence on the gradient via mountain pass techniques in ℝN. Appl. Math. Comput. 2008, 203, 14–18. [Google Scholar]
- Faraci, F.; Motreanu, D.; Puglisi, D. Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 2015, 54, 525–538. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhang, Q.H.; Zhao, D. Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 2005, 302, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.L.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Diening, L.; Harjuletho, P.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin, Germany, 2011. [Google Scholar]
- Kovacik, O.; Rakosnik, J. On spaces Lp(x) and W1,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar]
- Carl, S.; Le, V.K.; Motreanu, D. Nonsmooth Variational Problems and Their Inequalities; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kichenassamy, S.; Veron, L. Singular solutions of the p-Laplace equation. Math. Ann. 1985, 275, 599–615. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.-S.; Hou, G.-L.; Ge, B. Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term. Mathematics 2020, 8, 1768. https://doi.org/10.3390/math8101768
Wang B-S, Hou G-L, Ge B. Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term. Mathematics. 2020; 8(10):1768. https://doi.org/10.3390/math8101768
Chicago/Turabian StyleWang, Bin-Sheng, Gang-Ling Hou, and Bin Ge. 2020. "Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term" Mathematics 8, no. 10: 1768. https://doi.org/10.3390/math8101768
APA StyleWang, B. -S., Hou, G. -L., & Ge, B. (2020). Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term. Mathematics, 8(10), 1768. https://doi.org/10.3390/math8101768