Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN
Abstract
:1. Introduction
- (AR)
- There are and , such that and
- (Je)
- There exists , such that
2. Preliminaries and Main Results
- (V)
- , and .
- (A)
- with meas .
- (G1)
- satisfies the Carathéodory condition.
- (G2)
- There exists a nonnegative function , such that
- (G3)
- uniformly for almost all .
- (G4)
- There exist and , such that
- (G5)
- for all .
- (i)
- There is a constant , such that for any , we can choose and , such that for all with .
- (ii)
- There exists an element ϕ in , , such that as .
- (iii)
- There is an element ψ in , , such that for all .
- (1)
- ;
- (2)
- (1)
- ;
- (2)
3. Conclusions
- I.
- We point out that with a similar analysis, our main consequences continue to hold when in (1) is changed into any non-local integro-differential operator in (2), where is a kernel function satisfying properties that
- (K1)
- , where ;
- (K2)
- there exists , such that for all ;
- (K3)
- for all .
- II.
- A new research direction which has a strong relationship with several related applications is the study of Kirchhoff-type equations
- (M1)
- fulfils , where is a constant.
- (M2)
- There is a positive constant , such that for any , where .
Funding
Acknowledgments
Conflicts of Interest
References
- Bertoin, J. Levy Processes. Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Bjorland, C.; Caffarelli, L.; Figalli, A. A Non-local gradient dependent operators. Adv. Math. 2012, 230, 1859–1894. [Google Scholar] [CrossRef] [Green Version]
- Caffarelli, L. Nonlocal Equations, Drifts and Games; Nonlinear Partial Differential Equations Abel Symposia Vol. 7; Springer: New York, NY, USA, 2012; pp. 37–52. [Google Scholar]
- Gilboa, G.; Osher, S. Nonlocal operators with applications to image processing. Multiscale Model. Simul. 2008, 7, 1005–1028. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2003, 339, 1–77. [Google Scholar] [CrossRef]
- Ge, B. Multiple solutions of nonlinear schrödinger equation with the fractional Laplacian. Nonlinear Anal. Real World Appl. 2016, 30, 236–247. [Google Scholar] [CrossRef]
- Teng, K. Multiple solutions for a class of fractional Schrödinger equations in ℝN. Nonlinear Anal. Real World Appl. 2015, 21, 76–86. [Google Scholar] [CrossRef]
- Zang, H.; Xu, J.; Zhang, F. Existence and multiplicity of solutions for superlinear fractional schrödinger equations in ℝN. J. Math. Phys. 2015, 56, 091502. [Google Scholar] [CrossRef]
- Rao, T.R.R. A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method. Malaya J. Mat. 2016, 4, 59–64. [Google Scholar]
- Argyros, I.K.; Regmi, S. Undergraduate Research at Cameron University on Iterative Procedures in Banach and Other Spaces; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
- Benia, Y.; Ruggieri, M.; Scapellato, A. Exact Solutions for a Modified Schrödinger Equation. Mathematics 2019, 7, 908. [Google Scholar] [CrossRef] [Green Version]
- Feng, B. Sharp threshold of global existence and instability of standing wave for the Schröinger-Hartree equation with a harmonic potential. Nonlinear Anal. Real World Appl. 2016, 31, 132–145. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, H. Stability of standing waves for the fractional Schrödinger-Choquard equation. Comput. Math. Appl. 2018, 75, 2499–2507. [Google Scholar] [CrossRef]
- Li, J. Exact dark soliton, periodic solutions and chaotic dynamics in a perturbed generalized nonlinear Schrödinger equation. Can. Appl. Math. Q. 2019, 17, 161–173. [Google Scholar]
- Papageorgiou, N.S.; Scapellato, A. Nonlinear Robin problems with general potential and crossing reaction. Rend. Lincei-Mat. Appl. 2019, 30, 1–29. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Li, X. Limiting profile of blow-up solutions for the Gross-Pitaevskii equation. Sci. China Math. 2009, 52, 1017–1030. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Il Nuovo Cimento 1961, 20, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 1961, 13, 451–454. [Google Scholar]
- Autuori, G.; Pucci, P. Elliptic problems involving the fractional Laplacian in ℝN. J. Differ. Equ. 2013, 255, 2340–2362. [Google Scholar] [CrossRef]
- Barrios, B.; Colorado, E.; De Pablo, A.; Sanchez, U. On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 2012, 252, 6133–6162. [Google Scholar] [CrossRef]
- Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M. Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var. 2016, 9, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Kim, Y.-H.; Lee, J. Existence of weak solutions to a class of Schrödinger-type equations involving the fractional p-Laplacian in ℝN. J. Korean Math. Soc. 2019, 56, 1529–1560. [Google Scholar]
- Lehrer, R.; Maia, L.A.; Squassina, M. On fractional p-Laplacian problems with weight. Differ. Integral Equ. 2015, 28, 15–28. [Google Scholar]
- Perera, K.; Squassina, M.; Yang, Y. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr. 2016, 289, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R. Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity. Contemp. Math. 2013, 595, 317–340. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Bisci, G.M.; Servadei, R. Superlinear nonlocal fractional problems with infinitely many solutions. Nonlinearity 2015, 28, 2247–2264. [Google Scholar]
- Chang, X.; Wang, Z.-Q. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 2014, 256, 2965–2992. [Google Scholar] [CrossRef]
- Torres, C.E. Existence and symmetry result for fractional p-Laplacian in ℝn. Commun. Pure Appl. Anal. 2017, 16, 99–113. [Google Scholar]
- Wei, Y.; Su, X. Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc. Var. Partial. Differ. Equ. 2015, 52, 95–124. [Google Scholar] [CrossRef]
- Liu, S.B. On ground states of superlinear p-Laplacian equations in ℝN. J. Math. Anal. Appl. 2010, 361, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Jeanjean, L. On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer type problem set on ℝN. Proc. R. Soc. Edinburgh 1999, 129, 787–809. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Tang, X.H. Existence of infinitely many solutions for p-Laplacian equations in ℝN. Nonlinear Anal. 2013, 92, 72–81. [Google Scholar] [CrossRef]
- Alves, C.O.; Liu, S.B. On superlinear p(x)-Laplacian equations in ℝN. Nonlinear Anal. 2010, 73, 2566–2579. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.-M.; Kim, Y.-H. Existence and multiplicity of solutions for Kirchhoff–Schrödinger-type equations involving p(x)-Laplacian on the entire space ℝN. Nonlinear Anal. Real World Appl. 2019, 45, 620–649. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, Y.-H.; Lee, J. Existence and multiplicity of solutions for equations of p(x)-Laplace type in ℝN without AR-condition. Differ. Integral Equ. 2018, 31, 435–464. [Google Scholar]
- Zang, A. p(x)-Laplacian equations satisfying Cerami condition. J. Math. Anal. Appl. 2008, 337, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Brändle, C.; Colorado, E.; de Pablo, A.; Sánchez, U. A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinburgh 2013, 143, 39–71. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.L.M.; da Silva, E.D.; Goulart, C. Quasilinear elliptic problems with concave–convex nonlinearities. Commun. Contemp. Math. 2017, 19, 1650050. [Google Scholar] [CrossRef]
- Chen, W.; Deng, S. The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities. Z. Angew. Math. Phys. 2014, 66, 1387–1400. [Google Scholar] [CrossRef]
- Ho, K.; Sim, I. Existence and muliplicity of solutions for degenerate p(x)-Laplace equations involving concave-convex type nonlinearities with two parameters. Taiwan. J. Math. 2015, 19, 1469–1493. [Google Scholar] [CrossRef]
- Wu, T.-F. Multiple positive solutions for a class of concave–convex elliptic problems in ℝN involving sign-changing weight. J. Funct. Anal. 2010, 258, 99–131. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.; Zhang, B.; Ferrara, M. Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave–convex nonlinearities. Proc. R. Soc. A 2015, 471, 20150034. [Google Scholar] [CrossRef] [Green Version]
- Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 1994, 122, 519–543. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.H.; Kim, Y.-H.; Park, K. Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in ℝN. Bound. Value Probl. 2020, 121, 1–24. [Google Scholar]
- Bae, J.-H.; Kim, Y.-H. Critical points theorems via the generalized Ekeland variational principle and its application to equations of p(x)-Laplace type in ℝN. Taiwan. J. Math. 2019, 23, 193–229. [Google Scholar] [CrossRef]
- Oanh, B.T.K.; Phuong, D.N. On multiplicity solutions for a non-local fractional p-Laplace equation. Complex Var. Elliptic Equ. 2020, 65, 801–822. [Google Scholar] [CrossRef]
- Willem, M. Minimax Theorems; Birkhauser: Basel, Switzerland, 1996. [Google Scholar]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Demengel, F.; Demengel, G. Functional Spaces for the Theory of Elliptic Partial Differential Equations; Transl. from the 2007 French original by R. Ernè. Universitext; Springer: London, UK, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-H. Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN. Mathematics 2020, 8, 1792. https://doi.org/10.3390/math8101792
Kim Y-H. Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN. Mathematics. 2020; 8(10):1792. https://doi.org/10.3390/math8101792
Chicago/Turabian StyleKim, Yun-Ho. 2020. "Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN" Mathematics 8, no. 10: 1792. https://doi.org/10.3390/math8101792
APA StyleKim, Y. -H. (2020). Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN. Mathematics, 8(10), 1792. https://doi.org/10.3390/math8101792