Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order
Abstract
:1. Introduction
2. Oscillation Criteria of (1) when
3. Oscillation Criteria of (1) when
4. Conclusions
- (1)
- In this paper, several Nehari, Hille and Ohriska type oscillation criterion have been given. The applicability of these criteria for (1) on an arbitrary time scale is achieved. The reported results have extended related findings to the differential and dynamics equations of second order as follows:
- (i)
- (ii)
- (iii)
- (iv)
- (2)
Author Contributions
Funding
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains — A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext: Ann Arbor, MI, USA, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Nehari, Z. Oscillation criteria for second-order linear differential equations. Trans. Am. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Wong, J.S. Second order oscillation with retarded arguments. In Ordinary Differential Equations; Academic Press: New York, NY, USA; London, UK, 1972; pp. 581–596. [Google Scholar]
- Erbe, L. Oscillation criteria for second order nonlinear delay equations. Can. Math. Bull. 1973, 16, 49–56. [Google Scholar] [CrossRef]
- Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Thandapani, E.; Ravi, K.; Graef, J. Oscillation and comparison theorems for half-linear second order difference equations. Comput. Math. Appl. 2001, 42, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 2009, 9, 51–68. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for sublinear half-linear delay dynamic equations on time scales. Int. J. Differ. Eq. 2008, 3, 227–245. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Hille and Nehari type criteria for third order delay dynamic equations. J. Differ. Eq. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mountain Journal of Mathematics Volume forthcoming, Number forthcoming (2020). Available online: https://projecteuclid.org/euclid.rmjm/1596037174 (accessed on 19 October 2020).
- Bohner, M.; Hassan, T.S. Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities. Appl. Anal. Discret. Math. 2009, 3, 242–252. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory 2020, 46, 1–14. [Google Scholar]
- Elabbasy, E.M.; El-Nabulsi, R.A.; Moaaz, O.; Bazighifan, O. Oscillatory properties of solutions of even order differential equations. Symmetry 2020, 12, 212. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Peterson, A. Oscillation criteria for second-order matrix dynamic equations on a time scale. J. Comput. Appl. Math. 2002, 141, 169–185. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A. Boundedness and oscillation for nonlinear dynamic equations on a time scale. Proc. Am. Math. Soc. 2003, 132, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Hassan, T.S. New oscillation criteria for second order sublinear dynamic equations. Dyn. Syst. Appl. 2013, 22, 49–63. [Google Scholar]
- Erbe, L.; Peterson, A.; Saker, S.H. Hille and Nehari type criteria for third order dynamic equations. J. Math. Anal. Appl. 2007, 329, 112–131. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Eq. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Hassan, T.S.; Agarwal, R.P.; Mohammed, W. Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Differ. Eq. 2017, 2017, 111. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for second order sublinear dynamic equations with damping term. J. Differ. Eq. Appl. 2011, 17, 505–523. [Google Scholar]
- Leighton, W. The detection of the oscillation of solutions of asecond order linear differential equation. Duke J. Math. 1950, 17, 57–62. [Google Scholar] [CrossRef]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Řehak, P. New results on critical oscillation constants depending on a graininess. Dyn. Syst. Appl. 2010, 19, 271–288. [Google Scholar]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Eq. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Wintner, A. On the nonexistence of conjugate points. Am. J. Math. 1951, 73, 368–380. [Google Scholar] [CrossRef]
- Sun, Y.; Hassan, T.S. Oscillation criteria for functional dynamic equations with nonlinearities given by Riemann-Stieltjes integral. Abstr. Appl. Anal. 2014, 2014, 697526. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Sun, Y.; Menaem, A.A. Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order. Mathematics 2020, 8, 1897. https://doi.org/10.3390/math8111897
Hassan TS, Sun Y, Menaem AA. Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order. Mathematics. 2020; 8(11):1897. https://doi.org/10.3390/math8111897
Chicago/Turabian StyleHassan, Taher S., Yuangong Sun, and Amir Abdel Menaem. 2020. "Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order" Mathematics 8, no. 11: 1897. https://doi.org/10.3390/math8111897
APA StyleHassan, T. S., Sun, Y., & Menaem, A. A. (2020). Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order. Mathematics, 8(11), 1897. https://doi.org/10.3390/math8111897