Non-Parametric Probability Distributions Embedded Inside of a Linear Space Provided with a Quadratic Metric
Abstract
:1. Introduction
2. Probability Viewed as a Mass
3. What We Mean about a Random Quantity
4. The Logic of Certainty
5. Methodological Aspects Concerning Non-Parametric Probability Distributions
6. A Geometric Definition of a Random Quantity
7. A Canonical Expression of a Random Quantity
8. A Coherent Prevision of a Random Quantity Viewed as an -Dimensional Vector Coinciding with Its Center of Mass
9. A Decomposition of a Coherent Prevision of a Random Quantity
10. Quadratic Indices and a Decomposition of the Variance of a Random Quantity
11. Invariance of a Random Quantity Subjected to a Translation
12. A Particular Random Quantity Subjected to a Rotation
13. Intrinsic Properties of Probabilistic Indices
14. Variations Connected with the Bravais–Pearson Correlation Coefficient
15. A Measure of Distance between Two Non-Parametric Probability Distributions
16. Some Future Works
17. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Echenique, F. New developments in revealed preference theory: Decisions under risk, uncertainty, and intertemporal choice. Annu. Rev. Econ. 2020, 12, 299–316. [Google Scholar] [CrossRef]
- Berti, P.; Dreassi, E.; Rigo, P. A notion of conditional probability and some of its consequences. Decis. Econ. Financ. 2020, 43, 3–15. [Google Scholar] [CrossRef]
- Sudderth, W.D. Optimal markov strategies. Decis. Econ. Financ. 2020, 43, 43–54. [Google Scholar] [CrossRef]
- Denti, T.; Marinacci, M.; Montrucchio, L. A note on rational inattention and rate distortion theory. Decis. Econ. Financ. 2020, 43, 75–89. [Google Scholar] [CrossRef]
- Good, I.J. Subjective probability as the measure of a non-measurable set. In Logic, Methodology and Philosophy of Science; Nagel, E., Suppes, P., Tarski, A., Eds.; Stanford University Press: Stanford, CA, USA, 1962; pp. 319–329. [Google Scholar]
- Piccinato, L. De Finetti’s logic of uncertainty and its impact on statistical thinking and practice. In Bayesian Inference and Decision Techniques; Goel, P.K., Zellner, A., Eds.; North-Holland: Amsterdam, The Netherlands, 1986; pp. 13–30. [Google Scholar]
- Anscombe, F.J.; Aumann, R.J. A definition of subjective probability. Ann. Math. Stat. 1963, 34, 199–205. [Google Scholar] [CrossRef]
- Coletti, G.; Petturiti, D.; Vantaggi, B. Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Inf. Sci. 2016, 339, 64–84. [Google Scholar] [CrossRef]
- Gilio, A.; Sanfilippo, G. Conditional random quantities and compounds of conditionals. Stud. Log. 2014, 102, 709–729. [Google Scholar] [CrossRef] [Green Version]
- Coletti, G.; Petturiti, D.; Vantaggi, B. When upper conditional probabilities are conditional possibility measures. Fuzzy Sets Syst. 2016, 304, 45–64. [Google Scholar] [CrossRef]
- Capotorti, A.; Coletti, G.; Vantaggi, B. Standard and nonstandard representability of positive uncertainty orderings. Kybernetika 2014, 50, 189–215. [Google Scholar] [CrossRef] [Green Version]
- Savage, L.J. The theory of statistical decision. J. Am. Stat. Assoc. 1951, 46, 55–67. [Google Scholar] [CrossRef]
- Coletti, G.; Scozzafava, R.; Vantaggi, B. Possibilistic and probabilistic logic under coherence: Default reasoning and System P. Math. Slovaca 2015, 65, 863–890. [Google Scholar] [CrossRef]
- Koopman, B.O. The axioms and algebra of intuitive probability. Ann. Math. 1940, 41, 269–292. [Google Scholar] [CrossRef]
- Regazzini, E. Finitely additive conditional probabilities. Rend. Del Semin. Mat. Fis. Milano 1985, 55, 69–89. [Google Scholar] [CrossRef]
- Berti, P.; Regazzini, E.; Rigo, P. Strong previsions of random elements. Stat. Methods Appl. (J. Ital. Stat. Soc.) 2001, 10, 11–28. [Google Scholar] [CrossRef]
- Pfanzagl, J. Subjective probability derived from the Morgenstern-von Neumann utility theory. In Essays in Mathematical Economics in Honor of Oskar Morgenstern; Shubik, M., Ed.; Princeton University Press: Princeton, NJ, USA, 1967; pp. 237–251. [Google Scholar]
- Berti, P.; Rigo, P. On coherent conditional probabilities and disintegrations. Ann. Math. Artif. Intell. 2002, 35, 71–82. [Google Scholar] [CrossRef]
- Pompilj, G. On intrinsic independence. Bull. Int. Stat. Inst. 1957, 35, 91–97. [Google Scholar]
- Von Neumann, J. Examples of continuous geometries. Proc. Natl. Acad. Sci. USA 1936, 22, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Nunke, R.J.; Savage, L.J. On the set of values of a nonatomic, finitely additive, finite measure. Proc. Am. Math. Soc. 1952, 3, 217–218. [Google Scholar] [CrossRef]
- Cassese, G.; Rigo, P.; Vantaggi, B. A special issue on the mathematics of subjective probability. Decis. Econ. Financ. 2020, 43, 1–2. [Google Scholar] [CrossRef]
- Gilio, A. Probabilistic reasoning under coherence in System P. Ann. Math. Artif. Intell. 2002, 34, 5–34. [Google Scholar] [CrossRef]
- Angelini, P. A risk-neutral consumer and his coherent decisions under uncertainty: A methodological analysis. Int. J. Econ. Financ. 2020, 12, 95–105. [Google Scholar] [CrossRef]
- Coletti, G.; Petturiti, D.; Vantaggi, B. Bayesian inference: The role of coherence to deal with a prior belief function. Stat. Methods Appl. 2014, 23, 519–545. [Google Scholar] [CrossRef]
- Pfeifer, N.; Sanfilippo, G. Probabilistic squares and hexagons of opposition under coherence. Int. J. Approx. Reason. 2017, 88, 282–294. [Google Scholar] [CrossRef] [Green Version]
- De Finetti, B. The proper approach to probability. In Exchangeability in Probability and Statistics; Koch, G., Spizzichino, F., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982; pp. 1–6. [Google Scholar]
- Forcina, A. Gini’s contributions to the theory of inference. Int. Stat. Rev. 1982, 50, 65–70. [Google Scholar] [CrossRef]
- De Finetti, B. Probabilism: A Critical Essay on the Theory of Probability and on the Value of Science. Erkenntnis 1989, 31, 169–223. [Google Scholar] [CrossRef]
- De Finetti, B. The role of “Dutch Books” and of “proper scoring rules”. Br. J. Psychol. Sci. 1981, 32, 55–56. [Google Scholar] [CrossRef]
- De Finetti, B. Probability: The different views and terminologies in a critical analysis. In Logic, Methodology and Philosophy of Science VI; Cohen, L.J., Łoś, J., Pfeiffer, H., Podewski, K.P., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982; pp. 391–394. [Google Scholar]
- De Finetti, B. Probability and exchangeability from a subjective point of view. Int. Stat. Rev. 1979, 47, 129–135. [Google Scholar] [CrossRef]
- Chung, J.K.; Kannappan, P.; Ng, C.T.; Sahoo, P.K. Measures of distance between probability distributions. J. Math. Anal. Appl. 1989, 138, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Acciaio, B.; Svindland, G. Are law-invariant risk functions concave on distributions? Depend. Model. 2013, 1, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Rockafellar, R.T.; Uryasev, S.; Zabarankin, M. Generalized deviations in risk analysis. Financ. Stochastics 2006, 10, 51–74. [Google Scholar] [CrossRef]
- Drapeau, S.; Kupper, M. Risk preferences and their robust representation. Math. Oper. Res. 2013, 38, 28–62. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelini, P.; Maturo, F. Non-Parametric Probability Distributions Embedded Inside of a Linear Space Provided with a Quadratic Metric. Mathematics 2020, 8, 1901. https://doi.org/10.3390/math8111901
Angelini P, Maturo F. Non-Parametric Probability Distributions Embedded Inside of a Linear Space Provided with a Quadratic Metric. Mathematics. 2020; 8(11):1901. https://doi.org/10.3390/math8111901
Chicago/Turabian StyleAngelini, Pierpaolo, and Fabrizio Maturo. 2020. "Non-Parametric Probability Distributions Embedded Inside of a Linear Space Provided with a Quadratic Metric" Mathematics 8, no. 11: 1901. https://doi.org/10.3390/math8111901
APA StyleAngelini, P., & Maturo, F. (2020). Non-Parametric Probability Distributions Embedded Inside of a Linear Space Provided with a Quadratic Metric. Mathematics, 8(11), 1901. https://doi.org/10.3390/math8111901