Role of Economic Policy Uncertainty in the Connectedness of Cross-Country Stock Market Volatilities
Abstract
:1. Introduction
2. The Theoretical Issues
3. Data and Methodology
3.1. The Connectedness Model
3.2. The Cross-Country Determinants of Fear Connectedness
4. Empirical Findings
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Countries (Notation) | Brazil (BRA), Canada (CAN), China (CHN), France (FRA), Germany (GER), Hong Kong (HKG), Japan (JPN), Mexico (MEX), Russia (RUS), South Korea (SKR), Sweden (SWE), United Kingdom (UK), United States (USA) | |
---|---|---|
Variables | Measurement | Source |
EPU spillover from country i to country j. | Author’s calculation via Diebold and Yilmaz [16] | |
A binary variable tt takes 1 if the origin country i and country j share a border, 0 otherwise. | French Research Center in International Economics-(CEPII) | |
A binary variable that takes 1 if the origin country i and cntry j have had colonial ties, and 0 otherwise. | CEPII | |
A binary variable that takes 1 if the origin country i and country j share at least one common language, and 0therwise. | CEPII | |
Is the physical distance (in kilometers) between the origin country i and country j. | PII | |
Is the trade volume between origin country i and country j. It is the average for the period between 2011–2018. | F’s database | |
Is the financial openness index of the country, constructed by Chinn and Ito [27]. It is the average for the period between 2011–2018. | http://web.pdx.edu/~ito/Chinn-Ito_website.htm | |
Is exports plus imports relative to the GDP of the country. It is the average for the period between 2011–2018. | World Development Indicators (WDI), World Bank |
Panel A: Total | ||||||||||||||
USA | CAN | MEX | BRA | UK | GER | FRA | SWE | RUS | CHN | HKG | SKR | JPN | FROM | |
USA | 28.519 | 7.223 | 5.637 | 9.225 | 7.430 | 8.394 | 7.870 | 5.616 | 1.386 | 14.700 | 1.549 | 1.111 | 1.340 | 5.499 |
CAN | 10.734 | 41.754 | 3.330 | 5.572 | 6.069 | 6.913 | 5.777 | 4.796 | 1.917 | 8.855 | 1.869 | 1.800 | 0.612 | 4.480 |
MEX | 9.435 | 3.607 | 47.729 | 6.582 | 5.388 | 5.261 | 4.347 | 4.347 | 2.049 | 7.547 | 1.797 | 1.044 | 0.867 | 4.021 |
BRA | 11.490 | 4.538 | 4.969 | 35.308 | 6.708 | 7.199 | 6.374 | 5.239 | 1.857 | 12.327 | 1.950 | 1.255 | 0.786 | 4.976 |
UK | 7.893 | 4.209 | 3.123 | 5.142 | 23.760 | 15.557 | 14.205 | 10.876 | 1.718 | 7.581 | 2.860 | 1.842 | 1.232 | 5.865 |
GER | 8.104 | 4.143 | 2.837 | 5.246 | 14.649 | 22.305 | 15.409 | 11.414 | 2.032 | 7.431 | 2.984 | 2.108 | 1.338 | 5.977 |
FRA | 8.038 | 3.828 | 2.544 | 4.898 | 14.689 | 16.862 | 24.649 | 10.588 | 1.666 | 7.143 | 2.549 | 1.405 | 1.143 | 5.796 |
SWE | 6.894 | 3.703 | 2.838 | 4.485 | 12.745 | 14.241 | 12.063 | 28.166 | 2.806 | 6.323 | 2.701 | 1.891 | 1.145 | 5.526 |
RUS | 3.920 | 2.214 | 3.432 | 4.091 | 4.585 | 5.311 | 3.834 | 5.883 | 56.647 | 3.722 | 3.313 | 2.476 | 0.572 | 3.335 |
CHN | 13.487 | 5.623 | 4.149 | 9.080 | 7.691 | 8.080 | 7.077 | 5.576 | 1.306 | 25.964 | 7.115 | 2.696 | 2.156 | 5.695 |
HKG | 9.156 | 2.943 | 3.576 | 5.782 | 6.555 | 7.018 | 5.710 | 5.133 | 2.483 | 11.997 | 27.641 | 7.268 | 4.738 | 5.566 |
SKR | 9.414 | 3.470 | 3.638 | 5.321 | 6.452 | 7.221 | 5.108 | 5.069 | 2.602 | 7.713 | 8.496 | 31.235 | 4.261 | 5.290 |
JPN | 10.444 | 3.318 | 2.390 | 4.432 | 6.615 | 8.235 | 7.053 | 4.921 | 0.791 | 8.426 | 6.160 | 4.623 | 32.591 | 5.185 |
TO | 8.385 | 3.755 | 3.266 | 5.374 | 7.660 | 8.484 | 7.294 | 6.112 | 1.740 | 7.982 | 3.334 | 2.271 | 1.553 | TOTAL |
NET | 2.887 | −0.725 | −0.754 | 0.397 | 1.795 | 2.507 | 1.498 | 0.586 | −1.595 | 2.287 | −2.232 | −3.019 | −3.632 | 67.210% |
Panel B: Short-Term | ||||||||||||||
USA | CAN | MEX | BRA | UK | GER | FRA | SWE | RUS | CHN | HKG | SKR | JPN | FROM | |
USA | 27.308 | 6.888 | 5.381 | 8.799 | 7.099 | 8.028 | 7.542 | 5.399 | 1.322 | 14.023 | 1.454 | 1.049 | 1.278 | 5.251 |
CAN | 10.018 | 40.230 | 3.088 | 5.171 | 5.692 | 6.492 | 5.436 | 4.513 | 1.778 | 8.304 | 1.743 | 1.682 | 0.570 | 4.191 |
MEX | 8.835 | 3.383 | 45.828 | 6.189 | 5.060 | 4.948 | 4.088 | 4.104 | 1.931 | 7.074 | 1.666 | 0.971 | 0.807 | 3.774 |
BRA | 10.838 | 4.285 | 4.665 | 33.605 | 6.340 | 6.826 | 6.038 | 4.976 | 1.749 | 11.668 | 1.811 | 1.171 | 0.741 | 4.701 |
UK | 7.281 | 3.905 | 2.889 | 4.756 | 22.638 | 14.729 | 13.438 | 10.309 | 1.605 | 7.044 | 2.684 | 1.729 | 1.153 | 5.502 |
GER | 7.487 | 3.852 | 2.625 | 4.853 | 13.854 | 21.161 | 14.560 | 10.826 | 1.901 | 6.916 | 2.817 | 1.981 | 1.261 | 5.610 |
FRA | 7.427 | 3.557 | 2.351 | 4.537 | 13.917 | 15.986 | 23.496 | 10.047 | 1.550 | 6.642 | 2.394 | 1.305 | 1.071 | 5.445 |
SWE | 6.353 | 3.437 | 2.629 | 4.156 | 12.060 | 13.481 | 11.391 | 27.009 | 2.644 | 5.875 | 2.544 | 1.775 | 1.073 | 5.186 |
RUS | 3.587 | 2.058 | 3.160 | 3.754 | 4.244 | 4.941 | 3.561 | 5.509 | 54.301 | 3.411 | 3.120 | 2.332 | 0.525 | 3.092 |
CHN | 12.755 | 5.305 | 3.904 | 8.561 | 7.278 | 7.646 | 6.718 | 5.301 | 1.223 | 24.680 | 6.699 | 2.531 | 2.040 | 5.382 |
HKG | 8.537 | 2.682 | 3.300 | 5.340 | 6.024 | 6.451 | 5.252 | 4.739 | 2.280 | 10.981 | 26.163 | 6.804 | 4.442 | 5.141 |
SKR | 8.780 | 3.172 | 3.374 | 4.912 | 5.945 | 6.651 | 4.714 | 4.685 | 2.390 | 7.046 | 7.893 | 29.800 | 3.986 | 4.888 |
JPN | 9.720 | 3.081 | 2.194 | 4.098 | 6.140 | 7.663 | 6.578 | 4.584 | 0.721 | 7.740 | 5.682 | 4.287 | 31.103 | 4.807 |
TO | 7.817 | 3.508 | 3.043 | 5.010 | 7.204 | 7.988 | 6.870 | 5.769 | 1.623 | 7.440 | 3.116 | 2.124 | 1.457 | TOTAL |
NET | 2.566 | −0.683 | −0.731 | 0.309 | 1.703 | 2.378 | 1.426 | 0.582 | −1.470 | 2.059 | −2.025 | −2.764 | −3.349 | 62.970% |
Panel C: Long-Term | ||||||||||||||
USA | CAN | MEX | BRA | UK | GER | FRA | SWE | RUS | CHN | HKG | SKR | JPN | FROM | |
USA | 1.212 | 0.335 | 0.257 | 0.426 | 0.330 | 0.366 | 0.328 | 0.216 | 0.063 | 0.677 | 0.095 | 0.061 | 0.062 | 0.248 |
CAN | 0.716 | 1.525 | 0.242 | 0.401 | 0.377 | 0.422 | 0.342 | 0.283 | 0.139 | 0.551 | 0.126 | 0.119 | 0.042 | 0.289 |
MEX | 0.600 | 0.224 | 1.901 | 0.393 | 0.328 | 0.313 | 0.259 | 0.244 | 0.118 | 0.473 | 0.131 | 0.072 | 0.060 | 0.247 |
BRA | 0.652 | 0.253 | 0.304 | 1.703 | 0.368 | 0.372 | 0.336 | 0.263 | 0.108 | 0.659 | 0.138 | 0.084 | 0.045 | 0.276 |
UK | 0.613 | 0.304 | 0.234 | 0.386 | 1.122 | 0.828 | 0.767 | 0.567 | 0.113 | 0.537 | 0.176 | 0.113 | 0.079 | 0.363 |
GER | 0.617 | 0.290 | 0.212 | 0.394 | 0.795 | 1.145 | 0.849 | 0.588 | 0.132 | 0.515 | 0.166 | 0.126 | 0.076 | 0.366 |
FRA | 0.611 | 0.271 | 0.192 | 0.361 | 0.772 | 0.875 | 1.153 | 0.542 | 0.115 | 0.501 | 0.154 | 0.100 | 0.072 | 0.351 |
SWE | 0.540 | 0.266 | 0.208 | 0.328 | 0.685 | 0.760 | 0.672 | 1.157 | 0.162 | 0.447 | 0.157 | 0.116 | 0.072 | 0.340 |
RUS | 0.334 | 0.156 | 0.272 | 0.336 | 0.341 | 0.370 | 0.273 | 0.373 | 2.346 | 0.311 | 0.193 | 0.145 | 0.047 | 0.242 |
CHN | 0.732 | 0.317 | 0.245 | 0.519 | 0.412 | 0.434 | 0.359 | 0.275 | 0.083 | 1.285 | 0.416 | 0.165 | 0.116 | 0.313 |
HKG | 0.618 | 0.261 | 0.276 | 0.441 | 0.531 | 0.567 | 0.457 | 0.394 | 0.203 | 1.016 | 1.478 | 0.463 | 0.297 | 0.425 |
SKR | 0.634 | 0.299 | 0.264 | 0.408 | 0.507 | 0.569 | 0.394 | 0.384 | 0.212 | 0.667 | 0.603 | 1.435 | 0.275 | 0.401 |
JPN | 0.724 | 0.237 | 0.196 | 0.334 | 0.474 | 0.572 | 0.475 | 0.338 | 0.070 | 0.687 | 0.478 | 0.336 | 1.488 | 0.379 |
TO | 0.569 | 0.247 | 0.223 | 0.364 | 0.455 | 0.496 | 0.424 | 0.344 | 0.117 | 0.542 | 0.218 | 0.146 | 0.096 | TOTAL |
NET | 0.321 | −0.042 | −0.024 | 0.088 | 0.093 | 0.130 | 0.073 | 0.004 | −0.126 | 0.228 | −0.207 | −0.255 | −0.283 | 4.240% |
USA | CAN | MEX | BRA | UK | GER | FRA | SWE | RUS | CHN | HKG | SKR | JPN | FROM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USA | 31.011 | 4.786 | 3.170 | 1.554 | 4.211 | 9.232 | 7.925 | 6.889 | 0.244 | 3.394 | 2.693 | 17.956 | 6.934 | 5.307 |
CAN | 6.564 | 44.159 | 1.744 | 6.225 | 4.729 | 6.438 | 5.571 | 3.376 | 1.678 | 3.147 | 1.675 | 7.425 | 7.269 | 4.295 |
MEX | 5.367 | 3.355 | 50.962 | 0.426 | 1.637 | 3.625 | 1.814 | 5.639 | 4.170 | 4.197 | 5.875 | 8.336 | 4.597 | 3.772 |
BRA | 2.718 | 1.684 | 1.775 | 69.413 | 0.804 | 1.128 | 3.368 | 1.118 | 1.809 | 9.794 | 2.308 | 2.392 | 1.687 | 2.353 |
UK | 5.699 | 4.822 | 1.986 | 3.888 | 42.991 | 7.634 | 8.080 | 1.359 | 1.382 | 7.310 | 0.350 | 6.584 | 7.914 | 4.385 |
GER | 9.776 | 4.520 | 2.410 | 2.467 | 5.652 | 32.860 | 11.952 | 3.824 | 0.125 | 4.849 | 0.697 | 11.750 | 9.119 | 5.165 |
FRA | 9.055 | 5.033 | 1.128 | 1.659 | 8.345 | 13.020 | 37.083 | 3.525 | 1.079 | 3.398 | 0.287 | 9.143 | 7.245 | 4.840 |
SWE | 11.510 | 2.264 | 4.013 | 2.056 | 0.731 | 5.460 | 3.525 | 49.292 | 0.286 | 0.649 | 7.438 | 4.351 | 8.424 | 3.901 |
RUS | 0.523 | 3.911 | 10.480 | 1.476 | 1.466 | 0.795 | 1.892 | 1.407 | 73.116 | 1.035 | 0.246 | 2.015 | 1.639 | 2.068 |
CHN | 5.060 | 3.335 | 6.848 | 4.023 | 5.695 | 4.789 | 3.902 | 3.619 | 0.996 | 44.445 | 3.068 | 10.473 | 3.745 | 4.273 |
HKG | 5.733 | 4.259 | 6.505 | 0.998 | 0.227 | 1.295 | 0.770 | 10.306 | 0.550 | 3.282 | 52.970 | 8.672 | 4.432 | 3.618 |
SKR | 16.715 | 5.482 | 4.834 | 1.518 | 4.707 | 10.736 | 7.871 | 2.775 | 1.003 | 6.620 | 3.065 | 29.409 | 5.265 | 5.430 |
JPN | 8.788 | 5.104 | 2.938 | 0.573 | 5.671 | 8.058 | 8.049 | 7.484 | 0.062 | 3.417 | 2.918 | 7.330 | 39.608 | 4.646 |
TO | 6.731 | 3.735 | 3.679 | 2.066 | 3.375 | 5.555 | 4.979 | 3.948 | 1.029 | 3.930 | 2.355 | 7.417 | 5.252 | TOTAL |
NET | 1.425 | −0.560 | −0.093 | −0.286 | −1.010 | 0.390 | 0.139 | 0.047 | −1.039 | −0.343 | −1.262 | 1.987 | 0.606 | 54.052% |
References
- Ngene, G.; Post, J.A.; Mungai, A.N. Volatility and shock interactions and risk management implications: Evidence from the US and frontier markets. Emerg. Mark. Rev. 2018, 37, 181–198. [Google Scholar] [CrossRef]
- Wang, C. Fear factor: Does the VIXC provide the most accurate forecast of Canadian stock market volatility? Can. Inv. Rev. 2011, 2011, 10–16. [Google Scholar]
- Bouri, E.; Gupta, R.; Hosseini, S.; Lau, C.K.M. Does global fear predict fear in BRICS stock markets? Evidence from a Bayesian Graphical Structural VAR model. Emerg. Mark. Rev. 2018, 34, 124–142. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Bouri, E.; Roubaud, D. Dynamic network of implied volatility transmission among US equities, strategic commodities, and BRICS equities. Int. Rev. Financ. Anal. 2018, 57, 1–12. [Google Scholar] [CrossRef]
- Pastor, L.; Veronesi, P. Uncertainty about government policy and stock prices. J. Financ. 2012, 67, 1219–1264. [Google Scholar] [CrossRef]
- Badshah, I.U. Volatility spillover from the fear index to developed and emerging markets. Emerg. Mark. Financ. Trade 2018, 54, 27–40. [Google Scholar] [CrossRef] [Green Version]
- BenSaïda, A.; Litimi, H.; Abdallah, O. Volatility spillover shifts in global financial markets. Econ. Model. 2018, 73, 343–353. [Google Scholar] [CrossRef]
- Balli, F.; Uddin, G.S.; Mudassar, H.; Yoon, S.M. Cross-country determinants of economic policy uncertainty spillovers. Econ. Lett. 2017, 156, 179–183. [Google Scholar] [CrossRef]
- Yin, L.; Han, L. Spillovers of macroeconomic uncertainty among major economies. Appl. Econ. Lett. 2014, 21, 938–944. [Google Scholar] [CrossRef]
- Kang, S.H.; Yoon, S.M. Dynamic connectedness network in economic policy uncertainties. Appl. Econ. Lett. 2019, 26, 74–78. [Google Scholar] [CrossRef]
- Liow, K.H.; Liao, W.C.; Huang, Y. Dynamics of international spillovers and interaction: Evidence from financial market stress and economic policy uncertainty. Econ. Model. 2018, 68, 96–116. [Google Scholar] [CrossRef]
- Carr, P.; Madan, D. Towards a theory of volatility trading. In Volatility Estimation Techniques for Pricing Derivatives; Jarrow, R., Ed.; Risk Books: London, UK, 1998; pp. 417–427. [Google Scholar]
- Demeterfi, K.; Derman, E.; Kamal, M.; Zou, J. A guide to volatility and variance swaps. J. Deriv. 1999, 6, 9–32. [Google Scholar] [CrossRef]
- Belke, A.; Dubova, I.; Osowski, T. Policy uncertainty and international financial markets: The case of Brexit. Appl. Econ. 2018, 50, 3752–3770. [Google Scholar] [CrossRef] [Green Version]
- Ehrmann, M.; Fratzscher, M. Global financial transmission of monetary policy shocks. Oxf. Bull. Econ. Stat. 2009, 71, 739–759. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Baruník, J.; Křehlík, T. Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econom. 2018, 16, 271–296. [Google Scholar] [CrossRef]
- Äijö, J. Implied volatility term structure linkages between VDAX, VSMI and VSTOXX volatility indices. Glob. Financ. J. 2008, 18, 290–302. [Google Scholar] [CrossRef]
- Tsai, I.C. Spillover of fear: Evidence from the stock markets of five developed countries. Int. Rev. Financ. Anal. 2014, 33, 281–288. [Google Scholar] [CrossRef]
- Chen, C.Y.H. Does fear spill over? Asia Pac. J. Financ. Stud. 2014, 43, 465–491. [Google Scholar] [CrossRef]
- Shu, H.C.; Chang, J.H. Spillovers of volatility index: Evidence from US, European, and Asian stock markets. Appl. Econ. 2019, 51, 2070–2083. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring economic policy uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Gabauer, D.; Gupta, R. On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Econ. Lett. 2018, 171, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, N.; Gabauer, D.; Gupta, R.; Plakandaras, V. Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Econ. Lett. 2018, 166, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, N.; Gabauer, D.; Gupta, R. International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression. Int. Rev. Financ. Anal. 2019, 65, 101382. [Google Scholar] [CrossRef]
- Tsai, I.C. The source of global stock market risk: A viewpoint of economic policy uncertainty. Econ. Model. 2017, 60, 122–131. [Google Scholar] [CrossRef]
- Chinn, M.D.; Ito, H. A new measure of financial openness. J. Comp. Policy Anal. 2008, 10, 309–322. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar]
- Bracker, K.; Docking, D.S.; Koch, P.D. Economic determinants of evolution in international stock market integration. J. Empir. Financ. 1999, 6, 1–27. [Google Scholar] [CrossRef]
- Walti, S. The macroeconomic determinants of stock market synchronization. J. Int. Bank. Law 2005, 11, 436–441. [Google Scholar]
- Flavin, T.J.; Hurley, M.J.; Rousseau, F. Explaining stock market correlation: A gravity model approach. Manch. Sch. 2002, 70, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, G. Determinants of global spillovers from US monetary policy. J. Int. Money Financ. 2016, 67, 41–61. [Google Scholar] [CrossRef] [Green Version]
- Whaley, R.E. The investor fear gauge. J. Portf. Manag. 2000, 26, 12–17. [Google Scholar] [CrossRef]
- Bekaert, G.; Mehl, A. On the global financial market integration “swoosh” and the trilemma. J. Int. Money Financ. 2019, 94, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Bessler, D.A. Is it China that leads the Asian stock market contagion in 2015? Appl. Econ. Lett. 2018, 25, 752–757. [Google Scholar] [CrossRef]
Variable | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|---|---|
Panel A: Total | Panel B: Short-Term | Panel C: Long-Term | |||||||
EPU ij | 0.248 *** | 0.163 ** | 0.144 * | 0.234 *** | 0.152 ** | 0.134 * | 0.014 *** | 0.010 ** | 0.010 ** |
(0.085) | (0.075) | (0.077) | (0.080) | (0.071) | (0.073) | (0.005) | (0.005) | (0.005) | |
Cont ij | −0.138 | −0.198 | −0.159 | −0.210 | 0.021 | 0.012 | |||
(1.201) | (1.223) | (1.132) | (1.154) | (0.073) | (0.073) | ||||
Col ij | −0.529 | −0.560 | −0.494 | −0.537 | −0.036 | −0.023 | |||
(1.148) | (1.178) | (1.082) | (1.112) | (0.070) | (0.070) | ||||
Comm_Lang ij | 0.180 | 0.194 | 0.129 | 0.151 | 0.052 | 0.043 | |||
(1.042) | (1.148) | (0.983) | (1.084) | (0.064) | (0.069) | ||||
Dist ij | −1.723 *** | −1.706 *** | −1.633 *** | −1.614 *** | −0.090 *** | −0.092 *** | |||
(0.301) | (0.310) | (0.284) | (0.293) | (0.018) | (0.019) | ||||
Trade ij | 0.336 *** | 0.368 *** | 0.327 *** | 0.355 *** | 0.009 | 0.012 | |||
(0.124) | (0.130) | (0.117) | (0.123) | (0.008) | (0.008) | ||||
Trade_Open i | −0.006 | −0.005 | 0.001 * | ||||||
(0.004) | (0.003) | (0.000) | |||||||
Trade_Open j | 0.005 | 0.004 | 0.001 ** | ||||||
(0.004) | (0.003) | (0.000) | |||||||
Fin_Open i | 0.194 | 0.195 | −0.001 | ||||||
(0.212) | (0.200) | (0.013) | |||||||
Fin_Open j | −0.176 | −0.165 | −0.011 | ||||||
(0.213) | (0.201) | (0.013) | |||||||
R-Squared | 0.052 | 0.334 | 0.351 | 0.052 | 0.339 | 0.353 | 0.048 | 0.250 | 0.308 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Naeem, M.A.; Arif, M.; Shahzad, S.J.H.; Nor, S.M. Role of Economic Policy Uncertainty in the Connectedness of Cross-Country Stock Market Volatilities. Mathematics 2020, 8, 1904. https://doi.org/10.3390/math8111904
Hasan M, Naeem MA, Arif M, Shahzad SJH, Nor SM. Role of Economic Policy Uncertainty in the Connectedness of Cross-Country Stock Market Volatilities. Mathematics. 2020; 8(11):1904. https://doi.org/10.3390/math8111904
Chicago/Turabian StyleHasan, Mudassar, Muhammad Abubakr Naeem, Muhammad Arif, Syed Jawad Hussain Shahzad, and Safwan Mohd Nor. 2020. "Role of Economic Policy Uncertainty in the Connectedness of Cross-Country Stock Market Volatilities" Mathematics 8, no. 11: 1904. https://doi.org/10.3390/math8111904
APA StyleHasan, M., Naeem, M. A., Arif, M., Shahzad, S. J. H., & Nor, S. M. (2020). Role of Economic Policy Uncertainty in the Connectedness of Cross-Country Stock Market Volatilities. Mathematics, 8(11), 1904. https://doi.org/10.3390/math8111904