The Solvability of a Class of Convolution Equations Associated with 2D FRFT
Abstract
:1. Introduction
2. Preliminary
2.1. Fractional Hankel Transform
2.2. 2D Fractional Fourier Transform
3. 2D FRFT in Polar Coordinates and Its Properties
3.1. 2D Fractional Fourier Transform in Polar Coordinates
3.2. Relationship Between the 2D FRFT and the FRHT
3.3. Spatial Shift Theorem
3.4. Multiplication Theorem
4. Solvability for One Class of Convolution Equations
4.1. Convolution Theorem
4.2. Solvability Analysis
- (1)
- If, then there exists a constant, such thatfor every.
- (2)
- If for all, , thenis bounded and continuous on.
- (1)
- and;
- (2)
- and.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El-Abd, E.M. An existence theorem of monotonic solutions for a nonlinear functional integral equation of convolution type. Funct. Anal. Approx. Comput. 2012, 4, 77–83. [Google Scholar]
- García-Vicente, F.; Delgado, J.M.; Rodríguez, C. Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel. Phys. Med. Biol. 2000, 45, 645–650. [Google Scholar] [CrossRef]
- Giang, B.T.; Mau, N.V.; Tuan, N.M. Operational properties of two integral transforms of Fourier type and their convolutions. Integr. Equ. Oper. Th. 2009, 65, 363–386. [Google Scholar] [CrossRef]
- Wang, H. Boundary value problems for a class of first-order fuzzy delay differential equations. Mathematics 2020, 8, 683. [Google Scholar] [CrossRef]
- Giang, B.T.; Mau, N.V.; Tuan, N.M. Convolutions for the fourier transforms with geometric variables and applications. Math. Nachr. 2010, 283, 1758–1770. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, Y. Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions. J. Diff. Equ. 2016, 260, 6960–6988. [Google Scholar] [CrossRef]
- Gomez, C.; Prado, H.; Trofimchuk, S. Separation dichotomy and wavefronts for a nonlinear convolution equation. J. Math. Anal. Appl. 2014, 420, 1–19. [Google Scholar] [CrossRef]
- Zhang, Q.; Robbiano, L. Logarithmic decay of wave equation with Kelvin-Voigt damping. Mathematics 2020, 8, 715. [Google Scholar]
- Anh, P.K.; Tuan, N.M.; Tuan, P.D. The finite hartley new convolutions and solvability of the integral equations with toeplitz plus hankel kernels. J. Math. Anal. Appl. 2013, 397, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Chuan, L.H.; Mau, N.V.; Tuan, N.M. On a class of singular integral equations with the linear fractional carleman shift and the degenerate kernel. Complex Var. Elliptic Equ. 2008, 53, 117–137. [Google Scholar] [CrossRef]
- Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, V. Solving singular convolution equations using the inverse fast Fourier transform. Appl. Math. 2012, 57, 543–550. [Google Scholar] [CrossRef]
- Li, P.R.; Ren, G.B. Solvability of singular integro-differential equations via Riemann–Hilbert problem. J. Differ. Equ. 2018, 265, 5455–5471. [Google Scholar] [CrossRef]
- Li, P.R. Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions. Appl. Math. Comput. 2019, 344–345, 116–127. [Google Scholar] [CrossRef]
- Namias, V. The fractional order Fourier transformand and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Ankan, O.; Kutay, M.A.; Bozdaki, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Li, B.Z. Convolution theorem for fractional cosine-sine transform and its application. Math. Methods Appl. Sci. 2017, 40, 3651–3665. [Google Scholar] [CrossRef]
- Anh, P.K.; Castro, L.P.; Thao, P.T.; Tuan, N.M. Two new convolutions for the fractional Fourier transform. Wirel. Pers. Commun. 2017, 92, 623–637. [Google Scholar] [CrossRef]
- Li, Y.G.; Li, B.Z.; Sun, H.F. Uncertainty principles for wigner-ville distribution associated with the linear canonical transforms. Abstr. Appl. Anal. 2014, 2014, 470459. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, B.Z. Novel uncertainty principles for two-sided quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2018, 28, 1–15. [Google Scholar] [CrossRef]
- Li, B.Z.; Ji, Q.H. Sampling analysis in the complex reproducing kernel Hilbert space. Eur. J. Appl. Math. 2015, 26, 109–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Funaba, T.; Tanno, N. Self-fractional Hankel functions and their properties. Opt. Commun. 2000, 176, 71–75. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Dubey, J.K. Wavelet convolution product involving fractional fourier transform. Fract. Calc. Appl. Anal. 2017, 20, 173–189. [Google Scholar] [CrossRef]
- Baddour, N. Operational and convolution properties of two-dimensional Fourier transforms in polar coordinates. J. Opt. Soc. Am. A 2009, 26, 1767–1777. [Google Scholar] [CrossRef]
- Baddour, N. 2D Fourier transforms in polar coordinates. Adv. Imaging Electron. Phys. 2011, 165, 1–45. [Google Scholar]
- Gao, W.B.; Li, B.Z. Uncertainty principles for the windowed Hankel transform. Integr. Trans. Spec. Funct. 2020. [Google Scholar] [CrossRef]
- Chirikjian, G.; Kyatkin, A. Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Zhang, Z. Convolution theorems for two-dimensional LCT of angularly periodic functions in polar coordinates. IEEE Signal Process. Lett. 2019, 26, 1242–1246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-W.; Gao, W.-B.; Li, B.-Z. The Solvability of a Class of Convolution Equations Associated with 2D FRFT. Mathematics 2020, 8, 1928. https://doi.org/10.3390/math8111928
Li Z-W, Gao W-B, Li B-Z. The Solvability of a Class of Convolution Equations Associated with 2D FRFT. Mathematics. 2020; 8(11):1928. https://doi.org/10.3390/math8111928
Chicago/Turabian StyleLi, Zhen-Wei, Wen-Biao Gao, and Bing-Zhao Li. 2020. "The Solvability of a Class of Convolution Equations Associated with 2D FRFT" Mathematics 8, no. 11: 1928. https://doi.org/10.3390/math8111928
APA StyleLi, Z. -W., Gao, W. -B., & Li, B. -Z. (2020). The Solvability of a Class of Convolution Equations Associated with 2D FRFT. Mathematics, 8(11), 1928. https://doi.org/10.3390/math8111928