Applications of Stieltjes Derivatives to Periodic Boundary Value Inclusions
Abstract
:1. Introduction
2. Notations and Known Facts
- for each and , one can choose such that for all
- for each and , one can choose such that for all
3. Preliminary Result—Existence Theory for the Single-Valued Problem
4. Main Results
4.1. Existence of Solutions
- for every , is upper semicontinuous;
- for every , is -measurable;
- there exists a function LS-integrable with respect to g such thatfor every .
4.2. Dependence on the Data
- (i)
- (ii)
- if ,
- , are -measurable;
- there exists a function LS-integrable with respect to g such that
- (i)
- (ii)
- if is bounded,
- (i)
- By taking the supremum in (11) over ,
- (ii)
- If is bounded, the inequality (11) implies that
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Federson, M.; Mesquita, J.G.; Slavík, A. Measure functional differential equations and functional dynamic equations on time scales. J. Diff. Equ. 2012, 252, 3816–3847. [Google Scholar] [CrossRef]
- Kurzweil, J. Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslov. Math. J. 1957, 7, 418–449. [Google Scholar] [CrossRef]
- Schwabik, Š. Generalized Ordinary Differential Equations; World Scientific: London, UK, 1992. [Google Scholar]
- Satco, B.; Smyrlis, G. Periodic boundary value problems involving Stieltjes derivatives. J. Fixed Point Theory Appl. 2020, 22, 94. [Google Scholar] [CrossRef]
- Pouso, R.L.; Rodriguez, A. A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives. Real Anal. Exch. 2015, 40, 319–353. [Google Scholar] [CrossRef]
- Monteiro, G.A.; Satco, B. Distributional, differential and integral problems: Equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. 2017, 7, 1–26. [Google Scholar] [CrossRef]
- Frigon, M.; Pouso, R.L. Theory and applications of first-order systems of Stieltjes differential equations. Adv. Nonlinear Anal. 2017, 6, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Pouso, R.L.; Márquez, I.A. General existence principles for Stieltjes differential equations with applications to mathematical biology. J. Differ. Equations 2018, 264, 5388–5407. [Google Scholar] [CrossRef]
- Cichoń, M.; Satco, B. Measure differential inclusions—Between continuous and discrete. Adv. Diff. Equ. 2014, 56, 18. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, L.; Marraffa, V.; Satco, B. Closure properties for integral problems driven by regulated functions via convergence results. J. Math. Anal. Appl. 2018, 466, 690–710. [Google Scholar] [CrossRef]
- Di Piazza, L.; Marraffa, V.; Satco, B. Approximating the solutions of differential inclusions driven by measures. Ann. Mat. Pura Appl. 2019, 198, 2123–2140. [Google Scholar] [CrossRef]
- Silva, G.N.; Vinter, R.B. Measure driven differential inclusions. J. Math. Anal. Appl. 1996, 202, 727–746. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Croitoru, A.; Gavrilut, A.; Sambucini, A.R. An Extension of the Birkhoff Integrability for Multifunctions. Mediter. J. Math. 2016, 13, 2551–2575. [Google Scholar] [CrossRef]
- Castaing, C.; Godet-Thobie, C.; Truong, L.X.; Mostefai, F.Z. On a Fractional Differential Inclusion in Banach Space UnderWeak Compactness Condition. In Advances in Mathematical Economics Volume 20; Springer: Singapore, 2016; pp. 23–75. [Google Scholar]
- Precupanu, A.; Gavrilut, A. Set-valued Lebesgue and Riesz type theorems. Ann. Alexandru Ioan Cuza Univ. Math. 2013, 59, 113–128. [Google Scholar] [CrossRef]
- Chen, J.; Tisdell, C.C.; Yuan, R. On the solvability of periodic boundary value problems with impulse. J. Math. Anal. Appl. 2007, 331, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Nieto, J.; Shen, J. Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl. 2007, 325, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Bai, Z. Existence of solutions to first-order impulsive periodic boundary value problems. Nonlinear Anal. TMA 2009, 71, 1970–1977. [Google Scholar] [CrossRef]
- Boucherif, A.; Tisdell, C. Existence of periodic and non-periodic solutions to systems of boundary value problems for first-order differential with super-linear growth. Appl. Math. Comput. 2008, 204, 441–449. [Google Scholar] [CrossRef]
- Li, G.; Xue, X. On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl. 2002, 276, 168–183. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C.; Boucherif, A.; Ntouyas, N.K. On periodic boundary value problems of first-order perturbed impulsive differential inclusions. Electr. J. Diff. Equ. 2004, 2004, 1–9. [Google Scholar]
- Graef, J.R.; Henderson, J.; Ouahab, A. Impulsive Differential Inclusions. A Fixed Point Approach; de Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Cichoń, M.; Satco, B.; Sikorska-Nowak, A. Impulsive nonlocal differential equations through differential equations on time scales. Appl. Math. Comp. 2011, 218, 2449–2458. [Google Scholar] [CrossRef]
- Atici, F.M.; Biles, D.C. First order dynamic inclusions on time scales. J. Math. Anal. Appl. 2004, 292, 222–237. [Google Scholar] [CrossRef]
- Frigon, M.; Gilbert, H. Systems of first order inclusions on time scales. Topol. Meth. Nonlin. Anal. 2011, 37, 147–163. [Google Scholar]
- Fraňková, D. Regulated functions. Math. Bohem. 1991, 116, 20–59. [Google Scholar] [CrossRef]
- Saks, S. Theory of the Integral. Monografie Matematyczne; Mathematical Association: Warszawa, Poland, 1937. [Google Scholar]
- Monteiro, G.A.; Slavik, A.; Tvrdy, M. Kurzweil-Stieltjes integral, Theory and its Applications. In Series in Real Analysis; World Scientific: Singapore, 2018; Volume 15. [Google Scholar]
- Tvrdý, M. Differential and Integral Equations in the Space of Regulated Functions. Habil. Thesis, Mathematical Institute—Academy of Sciences of the Czech Republic, Praha, Czech Republic, 2001. [Google Scholar]
- Gordon, R.A. The Integrals of Lebesgue, Denjoy, Perron and Henstock. In Graduate Students in Mathematics; American Mathematical Society: Providence, RI, USA, 1994; Volume 4. [Google Scholar]
- Satco, B. Existence results for Urysohn integral inclusions involving the Henstock integral. J. Math. Anal. Appl. 2007, 336, 44–53. [Google Scholar] [CrossRef]
- Satco, B. Nonlinear Volterra integral equations in Henstock integrability setting. Electr. J. Diff. Equ. 2008, 39, 1–9. [Google Scholar]
- Young, W.H. On integrals and derivatives with respect to a function. Proc. Lond. Math. Soc. 1917, 2, 35–63. [Google Scholar] [CrossRef]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977; Volume 580. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis. Volume I: Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satco, B.; Smyrlis, G. Applications of Stieltjes Derivatives to Periodic Boundary Value Inclusions. Mathematics 2020, 8, 2142. https://doi.org/10.3390/math8122142
Satco B, Smyrlis G. Applications of Stieltjes Derivatives to Periodic Boundary Value Inclusions. Mathematics. 2020; 8(12):2142. https://doi.org/10.3390/math8122142
Chicago/Turabian StyleSatco, Bianca, and George Smyrlis. 2020. "Applications of Stieltjes Derivatives to Periodic Boundary Value Inclusions" Mathematics 8, no. 12: 2142. https://doi.org/10.3390/math8122142
APA StyleSatco, B., & Smyrlis, G. (2020). Applications of Stieltjes Derivatives to Periodic Boundary Value Inclusions. Mathematics, 8(12), 2142. https://doi.org/10.3390/math8122142